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ABSTRACT
Objective: Evaluate the efficiency of cabbage plants (Brassica olaraceae var. capitata L.) quantification cultivated 
under different types of mulching, using aerial images captured by RPAS (Remotely Piloted Aircraft System).
Design/methodology/approach: The cabbage plantation used for the study was established under a 
completely randomized block design with different types of mulch as treatments: black plastic, white plastic, 
straw, and bare soil. Manual plant counts and automated estimates were performed using two agricultural 
artificial intelligence platforms (Platforms A and B). The relationship was evaluated using linear regression 
correlation (R2), and the following indicators were subsequently used: estimation accuracy (Ps), estimation 
error percentage (Es), mean absolute error (MAE), and root mean square error (RMSE).
Results: Platform A showed a correlation coefficient range of R20.41 to 0.91. Platform B obtained R2 
values ranging from 0.77 to 0.88. Platform A exhibited the highest estimation accuracy (Ps) with 98.3% and an 
estimation error (Es) of 1.7% for straw mulch, with a mean absolute error (MAE) of 2.0% and a root mean 
square error (RMSE) of 1 for bare soil. Both platforms showed underestimations in the number of detected 
plants, ranging from 6.7% to 1.7%.
Limitations on study/implications: The use of RPAS was limited by atmospheric conditions such as wind 
and rain.
Findings/conclusions: The effectiveness of counting cabbage plants using RPAS was validated.

Keywords: Precision agriculture, Remotely Piloted Aircraft System (RPAS), drone, Unmanned Aerial Vehicle 
(UAV).

INTRODUCTION
	 Cabbage (Brassica oleracea L. var. capitata) is a cruciferous plant that is consumed 
worldwide, it is one of the main vegetables in the human diet and is prescribed by nutrition 
specialists as a source of nutrients and fiber, with potentially positive effects (Galanty et 
al., 2024). Also, cabbage crop can be achieved either by direct seeding (placing the seed 
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on the soil) or by transplanting (placing previously produced seedlings). Regardless of the 
strategy the producer uses to grow cabbage, various factors could interfere with adequate 
plant density, the most common being the presence of pests and diseases (Ngosong et al., 
2021; Isaq et al., 2023). It is also known that in warm climate regions, the establishment 
of appropriate plant density is affected by high temperatures, with the consequent need 
for plant replacement with live ones (replanting) (Adilov et al., 2021; Osmani et al., 2023). 
Therefore, locating and counting live plants in the plot is necessary to plan the replanting 
strategy. One of the current alternatives available for the producers is using aerial 
photographs and artificial intelligence algorithms for Precision Agriculture (PA) (Maurya 
et al., 2024).
	 PA focuses on the efficient use of resources applied to agricultural crops at various 
stages throughout the management of the agricultural production cycle (Chin et al., 
2023; Sangeetha et al., 2024 and Mehedi et al., 2024). Among the technologies used 
to achieve PA, the use of remote sensors through aerial photographs stands out for 
detecting, counting, and monitoring cultivated plants (Sangeetha et al., 2024 and Mehedi 
et al., 2024).
	 The information on the distribution and location of plants within a plot, as well as the 
timely determination of the quantity of existing elements, allows the decision-making for 
crop management (Thakur and Srinivasan, 2024). Therefore, the objective of the present 
research was to evaluate the effectiveness of the quantification of cabbage plants (Brassica 
oleracea L. var. capitata) grown under different soil covers using aerial photographs taken by 
RPAS (Remotely Piloted Aircraft System).

MATERIALS AND METHODS
Description of the area of study
	 This study was conducted at the experimental station of the Instituto de Ciencias 
Agricolas de la Universidad Autonoma de Baja California (ICA-UABC), located at the 
coordinates 32.407319° north latitude and 115.198853° west longitude. The soil in the 
experimental plot is of the salic Vertisol type, subtype sodic saline Regosol, belonging to the 
physiographic subprovince of the San Sebastián Vizcaino Desert (VRs-zwcaRGsoszw/2) 
(INEGI, 2007 and 2021b). The climate of the region is described as very dry and hot with 
summer rains, with temperatures ranging from 13 °C to 33.5 °C (BW(h’)hw(x’)) (INEGI, 
2020 and 2021a).

Experimental design and description of treatments
	 A plot with a cabbage crop was established with a completely randomized block design 
with three replicates. The cabbage crop was established with four treatments, which were: 
black plastic mulch, white plastic mulch, straw mulch, and bare soil. Each treatment 
consisted of two crop beds. The crop beds were oriented north-south, with a length of 
6.0 m, separated by 1.8 m, with a height of 0.2 m. Each bed had a pressurized irrigation 
system with a double drippers watering line. Commercial drip tape with an average water 
discharge of 1.0 L ha1 per dripper was used. Each dripper was spaced at 0.2 m.
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Crop establishment
	 The crop material was cabbage (Brassica oleracea L. var. capitata) of the Supreme 
Vantage® variety [Sakata Seed America, Inc. USA]. The seeds were germinated in 
commercial polystyrene trays with 338 cavities. 45 days after germination, the transplant 
was performed on September 27, 2023. The crop design had a triangular staggered 
distribution, with 0.4 m spacing between plants and 0.5 m between rows (Escobosa et al., 
2024). 

Agronomic management
	 The land preparation tasks consisted of one pass with a harrow and the formation of 
the planting beds. Subsequently, trenches were made where the pipes for the irrigation 
system were installed. The detailing of the planting beds, as well as the installation of covers 
and the irrigation system, was done manually. During the soil preparation tasks, Paraquat 
(dimethyl-4,4-bipyridylium dichloride-1; DRAGOCSON® Dragón, Mexico) was applied 
to control Bermuda grass (Cynodon dactylon). Broadleaf weed control was performed 
manually and mechanically. Irrigation management consisted of weekly applications. The 
pests that appeared were thrips (Thrips tabaci) and Bagrada bug (Bagrada hilaris). These 
were controlled through weekly applications of systemic insecticide (thiamethoxam, 
chlorantraniliprole; Durivo®, Syngenta Group, Mexico).
	 Fertilization was applied weekly through the irrigation system. The fertilization dose 
per hectare consisted of 330, 100, 150, 40, and 15 kg ha1 of nitrogen (N), phosphorus 
(P), potassium (K), calcium (Ca), and magnesium (Mg), respectively (Escobosa et al., 2024). 
The fertilizer sources were urea [CO2(NH2)2], phosphoric acid (H3PO4), potassium sulfate 
(K2SO4), calcium nitrate [Ca(NO3)2], and magnesium sulfate (MgSO4).

Acquisition of aerial images and processing
	 The images were obtained on October 24, 2023, 27 days after the transplant (DAT). 
A DJI® Phantom 4 RTK multispectral RPAS was used (DJI, 2019b). The flight path was 
designed in the native application for the iOS system, DJI Ground Station Pro (DJI GS 
Pro) (DJI, 2019a). The flight parameters used were perpendicular flight of the course, 
stationary image capture, forward speed of 1 m s1, f light altitude of 38.5 m, 80% front 
and side overlap, and a gimbal angle of 84.1°. The images were georeferenced using five 
ground control points positioned with a GNSS RTK differential GPS, South Galaxy G7 
(Prado et al., 2020; SOUTH, 2024).
	 The obtained aerial images were used to generate the orthomosaic composed of 
multispectral bands. These images underwent radiometric correction using PIX4DFields 
software (Pix4D, 2024), used under an academic license with (key: 61b1b106). The obtained 
bands in the composite orthomosaic were: blue (B: 45016 nm), green (G: 56016 nm), red 
(R: 65016 nm), red edge (RE: 73016 nm), and near-infrared (NIR: 84026 nm) (DJI, 
2019c). The orthomosaic was analyzed using the open-source Geographic Information 
System (GIS) software QGIS v.3.22.10 (Qgis, 2023).
	 The first count was performed manually, visually identifying the cabbage plants 
present in the image (García et al., 2020). For the count, the agricultural-type orthomosaic 
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composition was used, requiring the combination of the red (R), near-infrared (NIR), and 
blue (B) bands. This image was overlapped with 40% transparency over the Modified Soil 
Adjusted Vegetation Index (MSAVI2) (Equation 1). This index minimized the effect of bare 
soil, which allowed the visual differentiation of vegetation (Suman et al., 2024).
	 Finally, a point shapefile was created and used in edit mode to mark each visible plant 
with a vertix.

	 MSAVI NIR NIR NIR Rojo2
1
2

2 1 2 1 82 2=








× +( )− × +( ) − × −( )( ) 	 (Equation 1)

	 Automated quantification and identification of plants were performed using two 
online platforms focusing on artificial intelligence for precision agriculture. The platforms 
used were Agremo (Platform A) (Agremo, 2024b) and Solvi (Platform B) (Solvi, 2024c). 
In Platform A, the estimation procedure involved: uploading the orthomosaic, specifying 
the type of crop to be analyzed, providing the planting density used, and finally running 
the quantification tool (Agremo, 2024a). For Platform B, the procedure for quantification 
involved: uploading the multispectral orthomosaic. Subsequently, a training sample 
representing the treatments used was selected. The sample consisted of a rectangular 
section containing 22% of the plants from the experiment. Each present plant was marked 
within the training area (Figure 1). Finally, the quantification instruction was executed 
(Kitano et al., 2019; Solvi, 2024a).
	 Once the quantification tools were executed on both platforms, the results were exported. 
Platform A provided the result in Portable Network Graphics (PNG) format. This file was 
georeferenced and vectorized within the initial project where the manual quantification 
had been done (Qgis, 2024a). Platform B allowed the export of the identified objects in 
shape format (shp). This format is compatible with major GIS software. Subsequently, a 
polygon was created in shape format (shp), which delimited each crop bed. This vector file 
was the input to use the point counting tool within a polygon (Qgis, 2024b). This way, the 
number of detected plants was obtained for each platform and each planting bed.

Figure 1. Training surface of Platform B.
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Data Statistical Analysis
	 The statistical analysis was performed by comparing estimates from both platforms. For 
this purpose, the correlation method (R2) was used through linear regression in Minitab 
v18 software (Minitab, 2021). Subsequently, the estimates were evaluated using the 
following indicators: estimation accuracy (Ps) (Equation 2); percentage error in estimation 
(Es) (Equation 3); mean absolute error (MAE) (Equation 4); and root mean square error 
(RMSE) (Equation 5) (Kitano et al., 2019; García et al., 2020 and Li et al., 2023). The 
equations used are presented below.

	 Ps Estimated plants Plants counted=( ) ( )/ 	 (Equation 2)

	 Es Estimated plants Plants counted Plants counted= −( ) ( )/ 	 (Equation 3)

	 MAE N Esi
i

N
=

=
∑1

1
/ 	 (Equation 4)

	 RMSE
Estimated plants Plants counted

N
i
N

=
−( )( )

=∑ 2
1 	 (Equation 5)

RESULTS AND DISCUSSION
	 Manual quantification identified 567 cabbage plants. Figure 2 shows the spatial 
distribution. The plants were transplanted on a surface of 200 m2, which corresponded 
to a planting density of 2.8 plants m2. Table 1 indicated the number of plants counted 
manually and the estimation made by both platforms, as well as their presence in each type 
of mulching.
	 The estimates made by both platforms correlated positively with the manual 
counts (Figure 3). The correlation coefficients were in ranges above R20.77. Except 
for the estimate made by platform A in black plastic mulching (R20.41) (Figure 3A). 
Additionally, platform A presented the highest correlation coefficient with an R20.91 
(Figure 3G) in bare soil. Therefore, platform A had the widest range of correlation 
coefficient variability. Like platform A, platform B had its minimum R20.77 (Figure 
3B) in black plastic mulching; and the maximum correlation value (R20.88) (Figure 
3H) in bare soil. According to Aziz et al., (2023), correlation is affected by the presence 
of false positives, mainly corresponding to the presence of shadows, weeds and rocks.
	 The reliability indicators obtained during the experiment (Table 2) show that 
platform A achieved the highest estimation accuracy (Ps) in straw mulching with 98.3%. 
Platform B achieved its highest accuracy in treatments with black plastic mulching and 
straw mulching, both with (Ps96.8%). Both estimation platforms achieved their lowest 
accuracy in white plastic mulching (Platform A Ps97%; Platform B Ps87%). According 
to Li et al., (2024), the high ref lectance provided by white plastic covers reduces accuracy 
in plant identification, as their ref lectance values are lower than those of white surfaces. 
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Table 1. Plants counted and detected in the mulch treatments. 

Mulch treatment Manual 
counting

 Plants counted by:
Platform A Platform B

Black plastic 163 159 158

White plastic 136 132 154

Straw 162 159 157

Bare soil 106 104 99

Total 567 554 568

Table 2. Reliability indicators obtained in the experiment.

Platform Mulch treatment Ps (%) Es (%) MAE (%) RMSE

A

Black plastic 97.6 2.4 2.4 1.291

White plastic 97.0 3.0 3.0 1.095

Straw 98.3 1.7 3.1 1.080

Bare soil 98.0 2.0 2.0 1.000

B

Black plastic 96.8 3.2 3.2 1.472

White plastic 87.0 13.0 13.0 4.099

Straw 96.8 3.2 4.5 1.354

Bare soil 93.3 6.7 6.7 1.936

Figure 2. Spatial distribution of cabbage plants identified manually different types of mulching.
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Figure 3. Linear regression for both estimation platforms: platform A in black mulching (A); platform B in 
black mulching (B); platform A in white mulching (C); platform B in white mulching (D); platform A in straw 
mulching (E); platform B in straw mulching (F); platform A in bare soil (G); platform B in bare soil (H).

The accuracy values in plant number estimation match those reported by other authors 
(Neupane et al., 2019; García et al., 2020 and Prado et al., 2020).
	 Both platforms showed underestimations in the number of cabbage plants detected. The 
range of underestimation (Es) was from 1.7% to 6.7%. Platform B was the only one that 
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showed overestimation (Es13.0%) in white plastic mulching. This overestimation affected 
the total value of the mean absolute error indicator for platform B (MAE3.2 to 13%). 
The RMSE ranged from 1 to 4.09. According to Du et al. (2024), the detection of elements 
in plastic covers is affected by sample sizes, the presence of shadows, and surrounding 
vegetation; increasing the number of repetitions, with different sample sizes, will result in 
greater estimation accuracy.

CONCLUSIONS
	 The counting and location of plants has been carried out in different studies. These 
will focus on the development of tools for quantification, and on the reliability of different 
cameras and flight parameters (Paz, and Medrano, 2016; Chu et al., 2019; Jiang et al., 
2019; Koh et al., 2019; Jang et al., 2020; Shirzadifar et al., 2020; Valente et al., 2020 and 
Villareal et al., 2020). In the current research, aerial photographs taken by RPAS proved 
to be a reliable resource for quantifying transplanted cabbage plants under different soil 
covers. 
	 The two AI platforms used for plant detection and quantification showed varying 
degrees of reliability, with platform A exhibiting the lowest degree of error in estimations. 
	 The cover soil material or the absence of mulching, influenced in the reliability of the 
plant quantification, where the white plastic cover showed lower degrees of reliability for 
the estimation of plants.
	 The results obtained from RPAS images and processed by AI platforms should be 
verified by humans; this is because the estimations made are still not entirely accurate.
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