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ABSTRACT
Objective: in a study conducted from June 2021 to May 2022 in two apiaries in southeastern Mexico, levels 
of glyphosate residues in pollen collected by bee Apis mellifera were analyzed to assess potential risks to both 
bees and humans. 
Design/methodology/approach: the analysis used an immunoassay method after residue extraction using 
the QUECHERS method. 
Results: the results revealed the presence of glyphosate in all samples, with concentrations ranging between 
3.71 and 7.29 g kg1. However, risk analysis, as indicated by the pollen hazard quotient, suggested that these 
quantities did not pose a serious threat to bees or humans. The levels were within the limits of the acceptable 
daily intake (ADI), the acute reference dose (ARfD) and the acceptable operator exposure level (AOEL). 
Limitations/implications: although this study did not find any significant association between glyphosate 
and potential risks for both humans and bees, its persistence in the environment was demonstrated. 
Findings/conclusions: Glyphosate levels at the study site were low, suggesting minimal risk to both humans 
and bees. However, the wide distribution of glyphosate in the region makes it necessary to emphasize long-term 
studies to understand the possible chronic effects of the pesticide on all species in the area.
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INTRODUCTION
	 For ease in weed control management, specific crops have been genetically altered to 
resist the herbicide glyphosate (GLY), resulting in a heightened global use of this wide-
ranging systemic herbicide (Green, 2018; Székács & Darvas, 2012). GLY operates by 
blocking the activity of 5-enolpyruvylshikimate-3-phosphate synthase, an enzyme crucial 
for the biosynthesis of aromatic amino acids in plants (Duke & Powles, 2008; Shilo et al., 
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2016). Because animals lack this enzyme, GLY is generally considered one of the least 
toxic pesticides for them (Duke & Powles, 2008). However, there is evidence indicating 
that GLY affects organisms beyond plants. For example, it has been demonstrated to 
decrease the reproduction of earthworms residing in the soil (Gaupp-Berghausen et 
al., 2015). Moreover, GLY influences the growth of microalgae and aquatic bacteria 
and has detrimental effects on fish, amphibians, mammals, and birds (Benachour & 
Séralini, 2009; Relyea, 2005; Richard et al., 2005). GLY is additionally associated with 
adverse effects on soil rhizosphere-associated bacterial communities (Newman et al., 
2016) and a decrease in mycorrhizal colonization (Helander et al., 2018). Bees, as insects 
with a heightened risk of exposure, are especially susceptible due to various pathways of 
contact. They may encounter GLY while gathering nectar and pollen from flowering 
plants located several kilometers away, and subsequently transport any contaminants 
from these sources back to the hive (Agrebi et al., 2019; Coupe et al., 2012; Krupke et al., 
2012). The main routes of exposure involve interactions with agricultural crops, drift, 
and the widespread application of glyphosate formulations in urban environments for 
household and minor non-agricultural activities, such as weed control along railways, 
in parks, and within home gardens (Pasquale et al., 2013; Silva et al., 2018; Simon-delso 
et al., 2017). Pesticide residues have been observed in a variety of bee-derived products, 
such as honey, pollen, propolis, wax, royal jelly, and honeycomb (Calatayud-Vernich 
et al., 2017; de Oliveira et al., 2016; Matin et al., 2016; Pohorecka et al., 2012; Ruiz-
Toledo et al., 2018; Tosi et al., 2018; Valdovinos-Flores et al., 2017; Zawislak et al., 2019). 
Nevertheless, since 1990, the introduction and rapid spread of herbicide-resistant crops 
globally, including in Mexico ( James, 2016), have led to increased GLY application and, 
consequently, to higher health risks for both honeybees and consumers (Agrebi et al., 
2019; Bohan et al., 2005; Foulk, 2009; Rubio et al., 2014).
	 Although GLY may not show significant toxicity to adult bees (Lewis et al., 2016), 
concerns have been raised regarding potential chronic effects due to the accumulation of 
pesticide residues within beehives (Boily et al., 2013; Crenna et al., 2020; Herbert et al., 
2014; Weisbrod, 2020; J. Wu et al., 2012; Zawislak et al., 2019). For example, young adult 
bees exposed chronically to glyphosate formulations have displayed impaired associative 
learning and reduced sensitivity to sucrose (Gonalons & Farina, 2018; Herbert et al., 2014; 
Luo et al., 2021). Additionally, forager bees exposed to sublethal doses of such formulations 
have shown difficulties in navigating back to their hives (Balbuena et al., 2015).
	 Concerning human health, numerous regulatory agencies and scientific organizations 
worldwide have reached a consensus that there is no conclusive evidence suggesting 
that glyphosate causes health problems (EFSA, 2015b; European Commission, 2002; 
USEPA, 1993). However, there is evidence indicating that residues of glyphosate found 
in the environment could potentially pose health risks to humans (Agrebi et al., 2019). 
These risks include teratogenic, tumorigenic, and hepatorenal effects, which have been 
associated with endocrine disruption and oxidative stress, leading to metabolic alterations. 
The risk of exposure is further heightened by the fact that bee products are a part of the 
human supplementary diet. For instance, pollen is often considered an excellent dietary 
supplement for nutrition and is available in various forms on the market, such as granules, 
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capsules, tablets, and powders (Komosinska-Vassev et al., 2015; Kostić et al., 2020). This 
potentially amplifies the risk to human health.
	 In our study area, beekeepers typically place their beehives in uncultivated areas that 
allow for natural plant succession. However, these locations are often surrounded by a 
landscape featuring various crops such as soybean, mango, beans, pumpkins, maize, 
and sesame (as observed by the authors). While soybean is the only genetically modified 
crop in this region, non-transgenic varieties are also cultivated. Consequently, foraging 
honeybees potentially encounter a range of pesticides, including GLY, in water, pollen, 
and nectar (Hladik et al., 2016; Krupke et al., 2012). Moreover, since many farmers 
have transitioned from non-transgenic to transgenic soybean varieties, it is assumed that 
the use of this herbicide has increased. As a result, transgenic soybean likely plays a 
significant role in the contamination by GLY. Therefore, we hypothesized that colonies 
located in areas where transgenic soybean pollen is present would exhibit higher levels 
of GLY. The objective of our study was to quantify glyphosate residues in pollen samples 
collected from honeybees (Apis mellifera L.) and assess the potential risk it may pose to 
honeybees and the health of consumers.

MATERIALS AND METHODS
Study period, site and sample collection
	 The study was carried out in the municipalities of Suchiate and Tapachula, in the 
Soconusco region, Chiapas, in southern Mexico. We selected two sites based on different 
land uses: Site 1 (14° 45’′5.08”″N, 92° 15’′46.87”″W) in Suchiate, characterized by 2% 
urban settlements, 36% preserved remnants of the original forest, and 62% cropland; and 
Site 2 (14° 45’′19.20”″N, 92° 17’′30.60”″W) in Tapachula, with 1% of land occupied by 
urban settlements, 17% covered by the original forest, and 82% designated as cropland. To 
minimize the influence of geographical factors, the sampling sites were located within the 
same ecoregion and separated by 3 km (Figure 1). We operated under the assumption that 
the foraging areas of the bees were relatively independent and restricted to their respective 
sites, given the perceived adequacy of food resources near the hives, as indicated by honey 
production levels. Throughout one year, we gathered monthly pollen samples from ten 
colonies of A. mellifera at each site, totaling 120 pollen samples. Each sample was preserved 
in a 15 mL Falcon tube and kept frozen at 20 °C until analysis. Simultaneous sampling 
was conducted at both sites.

Glyphosate extraction and quantification
	 GLY residues were extracted using the methodology developed by Wiest et al. (2011). 
Two grams of pollen were accurately weighed and placed in a 50 mL centrifuge tube. To 
this, 10 mL of water were added, and the mixture was vigorously shaken. Subsequently, 
10 mL of acetonitrile, 3 mL of hexane, 4 g of anhydrous MgSO4, 1.0 g of sodium 
chloride, 1 g of sodium citrate dihydrate, and 500 mg of disodium citrate sesquihydrate 
were added. The tube was promptly shaken by hand, vortexed for one minute, and then 
centrifuged for 2 minutes at 5000 g. Six milliliters of the supernatant were carefully 
transferred into a 15 mL PSA (primary secondary amine) tube, which contained 900 mg 
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of anhydrous MgSO4, 150 mg of PSA bonded silica, and 150 mg of C18 bonded silica. 
This tube was immediately shaken by hand, vortexed for 10 seconds, and centrifuged for 
2 minutes at 5000 g. Finally, 4 mL of the extract were transferred into a 10 mL glass, 
cone-ended centrifuge tube, evaporated until a final volume of 50 L was achieved, and 
the sample was stored at 18 °C until analysis. All salts used for extraction were supplied 
by Agilent Technologies, Santa Clara, CA, USA.
	 GLY quantification was performed using an immunoassay kit from Abraxis LLC (Part 
number PN500084: Warminster, USA). The method demonstrated a limit of detection 
for GLY of 0.05 g/L, a limit of quantification of 0.13 g/L, a maximum detectable 
concentration of 4 g/L, and an average recovery rate of 102%. For quantification, a four-
point calibration curve was established (0.075, 0.2, 0.75, and 4 g/L) with two replicates 
for each point. An analytical quality control solution at 0.5 g/L was also employed. All 
samples underwent triplicate analysis, and for samples with GLY concentrations exceeding 
the calibration curve range, dilutions were performed until a reliable concentration 
estimate could be obtained. Possible cross-reactivity with other agrochemicals used in the 
study area, such as paraquat, spinosad, malathion, mancozeb, endosulfan, chlorothalonil, 
chlorpyrifos, and cypermethrin, was investigated. No interference was observed in the 
analysis, as confirmed by control tests in which these pesticides, at a concentration of 
1 g/L, did not react with our immunoassay test (Ruiz-Toledo et al., 2014). 

Exposure assessment and risk characterization to honeybee health
	 We calculated the average concentration of GLY found in the replicates and determined 
the Pollen Hazard Quotient (PHQ), which is a measure of the number of bees that, by 
consuming one kilogram of pollen, would reach the LD50 (dose required to kill 50% of 

Figure 1. Sampling sites in the study. Sites were separated by approximately 3 km to keep foragers from visiting 
same resources.
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the exposed population). To calculate the PHQ for honeybees, we followed the methods 
described by Stoner and Eitzer (2013a) and Traynor et al. (2016). This was done by dividing 
the concentration (g/kg) of GLY in the sample by the oral LD50 of GLY (100 g/bee), 
which is generally regarded as moderately toxic for adult bees (EFSA, 2015a; Lewis et 
al., 2016) and then multiplying by 100. For reference, an adult bee that consumed 100 
mg of pollen with a PHQ of 1000 would have ingested approximately 10% of the LD50 
of the pesticide during its development stage as a nurse bee, which lasts about 10 days 
(Calatayud-Vernich et al., 2018). If this 10% of the LD50 should not be exceeded (Atkins 
et al., 1981), a PHQ value of 1000 would correspond to a critical threshold for bee health 
(Stoner & Eitzer, 2013b; Traynor et al., 2016). A nurse bee typically consumes between 
13 and 120 mg of pollen during its first 10 days of life (OECD/OCDE, 1998; Rortais et 
al., 2005), with an average consumption of 65 mg (M.-P. Chauzat & Faucon, 2007). As a 
worst-case scenario, we considered the maximum consumption level of 12 mg of pollen per 
day (Rortais et al., 2005). We then multiplied this highest consumption level by the highest 
observed glyphosate residues and compared the resulting exposure levels with the oral 
acute LD50 of GLY.

Risk to consumer’s health
	 The toxicological reference values for GLY in this study were: 1) the acceptable daily 
intake (ADI) at 0.3 mg/kg bodyweight (Renwick, 2002a); 2) the daily acute reference 
dose (ARfD) at 0.5 mg/kg bodyweight (EFSA, 2015b); 3) the legally permitted maximum 
concentration of pesticide residues in or on food products or animal feed (MRL) at 0.05 
mg/kg (EFSA, 2017); and 4) the Acceptable Operator Exposure Level (AOEL) at 0.1mg/kg 
(EFSA, 2015a; Luo et al., 2021; Renwick, 2002b).
	 To assess the health risk associated with GLY residues in pollen for consumers, we 
relied on pollen consumption estimates obtained from data published in the EFSA 
Comprehensive European Food Consumption Database (EFSA, 2018). The highest 95th 
percentile value recorded corresponds to 69.55 g/person, which equates to 1.35 g/kg 
bodyweight for a person weighing 52 kilograms in France. In the most conservative 
scenario, we multiplied such high intake levels by the highest observed concentration of 
GLY residues. Finally, we compared the resulting exposure levels with the established 
toxicological reference values for GLY to determine the extent of the risk.

Statistical analysis
	 A descriptive analysis of GLY concentration was performed, which included 
calculating the geometric means, median, standard deviations, as well as minimum and 
maximum values. To identify any statistical differences among different sampling dates 
and between the two sites, a general linear mixed model ANOVA was conducted. In 
this analysis, the colony was treated as a random effect, while the site and the date of 
sampling were considered fixed effects. All statistical analyses were carried out using 
the R software package, and the significance level was set at 0.05 (R Development Core 
Team, 2020).
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RESULTS AND DISCUSSION
Glyphosate residues in pollen
	 We detected GLY residues in all samples in the range of 3.71 to 7.29 g/kg (Table 
1). In site 1, a mean (SD) GLY concentration of 5.07 g/kg (0.93) was found, while 
in site 2 it was 5.45 g/kg (0.84). No statistically significant differences were observed 
between sites (p0.05). The highest GLY concentration was found in site 1 in March 
(7.29 g/kg). However, no significant difference was found between months (p0.05). 
In our study area, GLY residues were identified in all samples collected at both sites 
(site 1, 3.9 - 7.29 g/kg and site 2, 3.71 - 6.68 g/kg). Residues of pesticides, including 
GLY, have been identified in live honeybees, stored fresh pollen, and beeswax. Notably, 
the beeswax contains elevated levels of commonly employed acaricides in beekeeping 
(Kasiotis et al., 2023). Thompson et al. (2014) identified this herbicide in brood samples 
at concentrations ranging from 1.23 to 19.5 mg/kg; Rubio et al. (2014) reported a mean 
concentration of 64 mg/kg and a maximum of 163 mg/kg in honey; Agrebi et al. (2019) 
found glyphosate residues in 91.4% of the bee bread samples, whose main component 
is pollen; the average concentration reported in this study is 55.52 mg/kg, seven times 
higher than in our study.

Exposure assessment and risk characterization of GLY residues in pollen for 
honeybees
	 In the estimation of HQ for GLY residues in pollen, we found an average of 5.79 for 
site 1 and 5.45 for site 2. This indicates that at site 1 an adult bee consumes 0.06% of the 
LD50 during its development stage, while in site 2 it is 0.05% (Table 1). In the worst case 
and with the maximum concentration of residues detected in pollen, we found that these 
concentrations could correspond to doses of 0.87 g of GLY residues ingested per nurse 

Table 1. Concentration of GLY in pollen (g/Kg) in the samples from both study sites (S1 and S2); N, number of samples; a % of samples with 
detectable levels (%DL); b values reported as geometric mean (GM); (SD) standard deviation; (HQ) Hazard quotient; % of LD50 refers to the 
proportion of the LD50 ingested daily by a bee.

Year Month N
%DL a GM b Median SD HQ % of LD50

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

2021

June 10 100 100 5.03 6.02 6.14 5.88 1.15 0.36 5.03 6.02 0.05 0.06

July 10 100 100 6.54 6.68 6.54 6.09 0.45 1.14 6.54 6.68 0.07 0.07

August 10 100 100 7.29 6.09 6.47 5.06 0.68 1.21 7.29 6.09 0.07 0.06

September 10 100 100 6.47 4.48 6.51 4.48 0.34 0.68 6.47 4.48 0.06 0.04

October 10 100 100 5.93 3.71 6.14 5.29 0.32 1.14 5.93 3.71 0.06 0.04

November 10 100 100 6.57 5.06 5.81 5.06 1.45 0.60 6.57 5.06 0.07 0.05

December 10 100 100 6.34 5.98 6.46 5.98 1.20 0.74 6.34 5.98 0.06 0.06

2022

January 10 100 100 3.95 4.86 4.94 4.86 0.98 0.71 3.95 4.86 0.04 0.05

February 10 100 100 4.94 6.26 5.91 6.26 0.57 0.60 4.94 6.26 0.05 0.06

March 10 100 100 5.91 5.78 6.57 6.02 0.69 0.16 5.91 5.78 0.06 0.06

April 10 100 100 6.35 5.66 6.35 5.72 0.70 0.49 6.35 5.66 0.06 0.06

May 10 100 100 5.07 5.69 5.91 5.94 0.72 0.16 5.07 5.69 0.05 0.06
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bee over 10 days (0.012 g  7.29 g/kg  10 days). This exposure level corresponds to 
approximately 0.008% of the oral LD50 of GLY.
	 Based on our assessments, the GLY concentrations found here do not appear to 
be toxic to bees. The maximum concentration of GLY residues found (7.29 g/kg) led 
to sub-lethal exposure (not acutely toxic to bees), equivalent to a dose of 0.87 g/bee 
(0.008% of its LD50), ingested over the first 10 days of life of a nurse bee. Nevertheless, 
some studies have suggested that even minute amounts of GLY may compromise the 
immune system of bees (Samsel & Seneff, 2013). Studies have shown that it increases 
the susceptibility of bees to the effects of other pesticides ( J. Y. Wu et al., 2011), perhaps 
working as a synergist (Botías et al., 2017; A. M. Chauzat et al., 2009; Wan et al., 
2018). This phenomenon has been observed with some fungicides which increases 
the toxicity of pyrethroids (Pilling et al., 1995; Pilling & Jepson, 1993), and of some 
neonicotinoids (Iwasa et al., 2004) to the honeybee. Furthermore, GLY, as well as the 
herbicide formulation containing GLY, can affect the intestinal microbiota of bees, 
leading to dysbiosis and increased susceptibility to bacterial infection (Motta et al., 2020, 
2022). GLY exposure has been found to decrease the expression of genes encoding 
antimicrobial peptides and inhibit melanization, which are important components of 
the bee’s innate immune system (Vázquez et al., 2018). Additionally, GLY exposure may 
disrupt the beneficial intestinal microbiota of bees, potentially affecting bee health and 
their effectiveness as pollinators (Motta et al., 2018). The effects of GLY on bee health 
and intestinal microbiota may vary depending on individual and colony susceptibility 
(Helander et al., 2018, 2023)

Risk assessment for consumers to contaminated pollen
	 According to our results, a high pollen consumption in southeastern Mexico could lead 
to a daily ingestion of 0.005 g GLY/kg bodyweight. No sample in our study exceeded 
the toxicological reference values. Rubio et al. (2014) found GLY residues in 70% of honey 
samples from countries that permitted the cultivation of genetically modified organisms, 
compared to only 21% in those that did not. In our study, we identified GLY residues 
in 100% of the pollen samples, indicating that contamination by this herbicide extends 
beyond honey, aligning with findings reported in soybeans, cereals, and ice cream (IARC, 
2017; Kolakowski et al., 2020; Rubio et al., 2014; Vicini et al., 2021). While tolerance 
levels for GLY and its metabolites have been established in various foods (Code of Federal 
Regulations., 2018), none have been set for pollen and honey. Mexico lacks federal 
monitoring programs for GLY, making it challenging to estimate the extent of food 
contamination in the country. In contrast, countries like the USA include GLY in their 
annual pesticide residue-monitoring program, detecting it in various commodities (FDA, 
2017). The Canadian Food Inspection Agency reported GLY in food, with a presence in 
29.7% of 3,188 analyzed food samples in 2015-2016.
	 GLY is recognized as a public health risk, prompting global concern and social action, 
especially since it has entered the human food chain (Mills et al., 2017). Recent research 
indicates an increase in the prevalence and average concentration of GLY in human 
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urine between 1993 and 2016 (Philipp Schledorn, 2014). Possible mechanisms underlying 
GLY toxicity in mammals have been described in recent studies (Mensah et al., 2015). 
The 2016 report from the International Agency for Research on Cancer of the World 
Health Organization (IARC, 2017) summarizes scientific data, and based on that report, 
the state of California in the USA listed GLY as known to cause cancer, requiring products 
to be labeled accordingly (California Environmental Protection Agency, 2017). Moreover, 
other studies have reported that the toxicological effects of GLY depend on the type of 
cells, chemical composition, as well as the magnitude and time of exposure (Agostini et 
al., 2020). This includes neurological effects (Martinez & Al-Ahmad, 2019), damage to 
the immune system (Santovito et al., 2018), effects on human embryonic and placental 
cells (Benachour & Séralini, 2009; Richard et al., 2005) and decreased sperm motility, 
viability, and mitochondrial activity (Nerozzi et al., 2020). It has also been noted that even 
at concentrations below toxic levels (1 g/L), GLY can reduce testosterone production 
by 35% and disrupt estrogen-regulated genes, promoting breast tumor growth (Hokanson 
et al., 2007). This situation is concerning, particularly since the Soconusco region has 
shown GLY residues in various matrices for human consumption (honey and well water). 
Although the concentrations of GLY reported in our studies did not appear to pose a high 
risk, a recent increase in the incidence of kidney problems, reproductive issues, cancer, and 
leukemia in the region has been reported, potentially associated with the unregulated use 
of this herbicide (Rivera-luna et al., 2014).

CONCLUSIONS
	 The detection of GLY in pollen collected by honeybees raises concerns about potential 
contamination in food supplies for both humans and bees. Nevertheless, despite the 
presence of GLY residues in all samples analyzed in this study, the reported concentrations 
do not seem to pose any apparent risk to the health of humans and bees, as per our 
calculations and considering the LD50. However, given the widespread distribution of 
GLY in the region, it is imperative to underscore the importance of conducting long-
term studies to comprehend the potential chronic effects of the pesticide on all species in 
the area.
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