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ABSTRACT
Objective: To describe the involvement of the interferon tau gene in the maternal recognition of pregnancy in 
sheep.
Design/Methodology/Approach: A search and analysis of the scientific documents retrieved from the Web 
of Science and Scopus databases related to the functions of the interferon tau gene in the maternal recognition 
of pregnancy in sheep were conducted.
Results: The interferon tau gene (IFN) participates in maternal recognition of pregnancy to avoid 
possible rejection of the embryo, and supports the secretion of progesterone involved in preparing the 
endometrium for implantation; it also inhibits myometrial motility to maintain pregnancy. IFNτstimulates 
the transcription of so-called interferon-stimulated genes (ISGs), which are the effectors of cell-autonomous 
antiviral defense.  One of the representative members of ISGs is the interferon 15-stimulated gene (ISG15) 
which regulates endometrial receptivity at implantation, as well as survival, growth and development of 
the conceptus. 
Study Limitations/Implications: Most embryonic losses occur between fertilization and maternal 
recognition of pregnancy. Understanding this issue is essential to understanding the possible causes of early 
pregnancy losses. 
Findings/Conclusions: Considerable progress has been made in the discovery of how the IFN and ISG15 
genes act in maternal recognition of gestation in sheep. However, some of the regulatory mechanisms involved 
remain poorly understood.
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INTRODUCTION
	 A large portion of embryo loss originates during the first few weeks post conception. 
Most embryonic losses occur between fertilization and maternal recognition of gestation 
(Lonergan et al., 2016). Therefore, it is necessary to address this issue with research into the 
enigmas of embryo implantation (Miller et al., 2012). Evolving molecular insights have been 
used to study the process of maternal recognition of gestation, along with the molecular 
aspects of endometrial-embryo interactions, embryo development and implantation 
(Zohni et al., 2016). In ruminants, the establishment of adequate communication between 
the conceptus and the endometrium is essential for embryo implantation and subsequent 
successful placentation (Nakamura et al., 2020). This process involves the protein known 
as interferon tau (IFN), initially called trophoblast protein or trophoblastin (Taverne & 
Noakes, 2019), which is produced by its homologous gene now known as interferon tau or 
also known as TP-1 gene (Ealy & Wooldridge, 2017). Some studies performed with ISG15 
and IFN genes in vivo as well as in vitro have confirmed their importance in reproductive 
function in ruminants. 
	 The IFN gene is involved in the maternal recognition of gestation to prevent possible 
rejection of the embryo and also supports progesterone secretion (D’Occhio et al., 2020). 
IFN molecules bind to cell surface receptors and initiate signal transduction; this activates 
the transcription of so-called ISGs which are the effectors of cell autonomous antiviral 
defense. One of the representative and well-studied ISG members with specific antiviral 
activities is the ISG15 gene (Wang et al., 2017). Given the critical importance of the 
process of maternal recognition of gestation, the objective of this review was to describe 
the implications of the interferon tau gene on maternal recognition of gestation in the ewe.

Maternal Recognition of Gestation and Implantation
	 Successful establishment of gestation involves ovulation of an oocyte, fertilization by a 
sperm and growth of the embryo in an environment conducive to normal development 
(Lonergan & Sanchez, 2020). In several domestic species, the corpus luteum (CL) is 
important in regulating the periodicity of the estrus cycle (Hennebold, 2018), because the 
establishment of gestation requires that progesterone concentrations remain elevated. This 
results in negative feedback in the hypothalamus and the anterior pituitary gland with 
inhibition of follicular development. In several species, the placenta subsequently replaces 
or supplements the luteal source of progesterone (Taverne & Noakes, 2019). The presence 
of a viable developing embryo prevents the CL from being destroyed (Pate, 2020) by the 
action of prostaglandin F2 and thus inhibits the return to estrus. This phenomenon was 
defined in 1969 as the “maternal recognition of gestation” (Short, 1969). 
	 The developing embryo eventually undergoes a process called conceptus elongation, 
which is a short-lived phenomenon resulting from remodeling and cellular migration of the 
developing embryo. Conceptus elongation begins on days 12-13 in ewes and is associated 
with implantation and recognition of gestation (Kasimanickam & Kasimanickam, 2020). 
Around day 12, the embryo’s trophoectoderm cells begin to secrete IFN, the gestation 
recognition factor that overrides the uterine luteolytic mechanism to ensure maintenance 
of a functional CL (Lonergan & Sanchez, 2020). Embryo implantation is a complex 
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succession of events involving the attachment, adhesion, and invasion of the blastocyst in 
the endometrium (Liu & Li, 2019). Understanding this issue is basic to understanding the 
possible causes of early gestational losses (Taverne & Noakes, 2019).

Role of Progesterone (P4) in Maternal Recognition of Gestation
	 Progesterone (P4) is secreted by the CL and placenta (Schumacher et al., 2014), and it is 
necessary for the establishment, maintenance and success of gestation (Wilson & Mesiano, 
2020). In the ewe it has two important functions: controlling the release of gonadotropin-
releasing hormone (GnRH; Bartlewski et al., 2017) and maintaining gestation (Keller et al., 
2019), because it is involved in preparing the endometrium for embryo implantation and it 
inhibits myometrial motility to maintain gestation (Mondal et al., 2017). 
	 P4 along with interferon tau are essential for maintening gestation (Reynolds et al., 
2014) and P4 blocks the proliferative effect of estrogen and induces the expression of genes 
that admit for the endometrium to accept embryo attachment (Halasz & Szekeres-Bartho, 
2013). High concentrations of P4 in maternal recognition of gestation have been associated 
with conceptus elongation and increased production of interferon tau, resulting in high 
gestation rates (Lonergan & Forde, 2014). And low P4 concentrations are associated with 
lower fertility, reduced conceptus growth and elongation, decreased IFN production and 
lower gestation rates (Lonergan & Sanchez, 2020).

Interferons
	 Interferons (IFNs) are widely expressed cytokines with antiviral properties (Gonzalez-
Navajas et al., 2012). Mammalian IFNs are classified into Type I, Type II and Type 
III (Bayer et al., 2016).  Type I IFNs are a group of highly related proteins that include 
interferons alpha (IFN), beta (IFN), delta (IFN), epsilon (IFN), tau (IFN) and omega 
(IFN) (Dembic, 2015). Type II IFNs are represented by a single member, referred to 
as IFN gamma (IFN); and the type III class of IFNs contains three members that are 
known as IFN lambda (IFN1, also known as IL-29), IFN2 (also known as IL-28A) and 
IFN3 (also known as IL-28B) (González-Navajas et al., 2012). IFNs are elements of the 
immune system and serve as a response to pathogens, have a key role in reducing pathogen 
replication and regulating immune responses (Snell et al., 2017).  

Interferon Tau (IFN) and its Involvement in Gestation Recognition 
	 Moor (1968) conducted research in ewes in which he demonstrated that the conceptus 
produces a protein. This protein is now known as interferon tau and is produced by its 
homologous gene IFN or also known as TP-1. The IFN gene interacts with uterine 
cells to direct the establishment and maintenance of gestation (Ealy & Wooldridge, 
2017).  After 1979, purification of IFN revealed its anti-luteolytic activity to prevent 
CL regression in sheep (Bazer & Thatcher, 2017). Originally, it was called ovine 
trophoblast protein (oTP-1) or trophoblastin. This substance has been shown to be a 
type I interferon, classified as ovine interferon tau (oIFN); (Taverne & Noakes, 2019). 
IFN is transiently produced by the ovine trophoectoderm, with expression being 
highest in the uterine epithelium between days 13 and 14 of the estrus cycle in ewes 



Agro productividad 2021. https://doi.org/10.32854/agrop.v14i8.2039

(Bazer & Thatcher, 2017). Secretion of ovine IFN by the trophectoderm begins on 
day 10 and increases to peak concentrations between days 13 and 16; it then ceases to 
be secreted after day 21 of gestation (Fuller et al., 2019). The main effect of IFN on 
maternal recognition of gestation is to alter the dynamics of PGF2 secretion in the 
early stage (Taverne & Noakes, 2019). 
	 IFNτsilences the transcription of receptors to estradiol type 1 (ER1) and, therefore, 
the expression of oxytocin receptors (ROX) that depend on ER1 receptors in the cells 
of the epithelial lumen and superficial glandular epithelial cells of the uterus to prevent 
the process of the endometrial luteolytic mechanism that requires pulsatile release 
of oxytocin-induced prostaglandins (Fleming et al., 2006). Presently, it is known that 
IFN serves as a vital mediator of early signaling between the developing embryo and 
the uterine endometrium in ruminants (Bazer et al., 2018). Progesterone and IFN 
operate mutually to induce expression of genes critical for conceptus development and 
implantation and in uterine glandular epithelial and stromal cells to induce expression 
of interferon-stimulated genes (ISG) such as: Interferon-induced myxovirus resistance 
protein (Mx1 and Mx2); Interferon-stimulated gene 15 (ISG15); 2’-5’-oligoadenylate 
synthetase 1 (OAS1); S-adenosyl methionine-containing radical domain 2 (RSAD2); 
Signal transducer and activator of transcription 1 (STAT1) and 2 (STAT2); Interferon 
regulatory factor 1 (IRF1) and 9 (IRF9; Bazer & Thatcher, 2017). Figure 1 shows the 
mechanism of action of IFN. 
	 In addition to the paracrine effects of IFN secreted by the trophectoderm, ISGs have 
been found to be expressed in cellular components of the CL (Bazer & Thatcher, 2017). The 
endocrine action of IFN has an impact on the CL to induce resistance to prostaglandin 
F2 in its cells (Antoniazzi et al., 2013). It jointly enhances ISG15 expression in luteal 
cells (Oliveira et al., 2008) and alters immune cell functions within the CL to maintain its 
function and gestation (Shirasuna et al., 2015).

Figure 1. Mechanism of action of interferon tau (IFN). PR: progesterone receptor; ER1: estrogen receptor 1; 
OXTR: oxytocin receptor; IFNAR: interferon alfa receptor; PGF2: prostaglandin F2 alfa; E2: estradiol; P4: 
progesterone; COX2: cyclooxygenase 2 or prostaglandin-endoperoxide synthase 2; IRF2: interferon regulatory 
factor 2.
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Figure 2. Signaling pathways for interferon tau in the ovine endometrial epithelium. IFN: Interferon tau; 
IFNAR1 and -2: interferon alfa receptor 1 and 2; activation of Janus kinase ( JAK) members Tyk2 and JAK1; 
STAT1 and 2: signal transducer and activator of transcription 1 and 2; IRF9: interferon regulatory factor 9; 
ISGF3: interferon-stimulated gene factor 3; interferon-stimulated response element (ISRE); GAS: interferon 
gamma-activated site; ISG: interferon-stimulated genes; Mx: Mixovirus resistance 1 and 2; OAS1: 2′-5′- 
oligoadenylate synthetase 1; RSAD2: Radical S-adenosyl methionine domain-containing protein 2; ISG15: 
interferon-stimulated gene 15; IRF: interferon regulatory factor.

Interferon-Stimulated Genes in Maternal Recognition of Gestation
	 IFN also stimulates ISGs in glandular epithelium and endometrial stromal cells.  Also, 
in peripheral tissues such as the CL and liver (Antoniazzi et al., 2013). Many ISGs have 
been hypothesized to play roles in implantation, placentation and conceptus development 
(Won, 2008). Some of the ISGs expressed in the ovine endometrium are shown below in 
Figure 2: MX1, MX2, ISG15, OAS1 and RSAD2, STAT1, STAT2 and IRF. 

Interferon-Stimulated Gene 15 (ISG15)
	 ISG15 is expressed in the ruminant uterus in response to IFN ( Joyce et al., 2005). 
ISG15 was first identified in mouse tumor cells in which expression was regulated by 
a type I IFN (Farrell et al., 1979). Subsequently, Blomstrom et al. (1986) purified and 
characterized the 15kDa protein. The polypeptide was named ISG15 (Joyce et al., 2005). 
Austin et al. (2003) were the first to link it to the initiation of the gestation process by 
identifying the ISG15 protein secreted by the endometrium. ISG15 is a critical uterine 
response for the progressive processes of implantation and placentation, it was the first 
ubiquitin-like modifier (UBL) discovered and is stimulated with type I interferons and virus 
infections (Won, 2008). This ISG15 gene is synthesized in many cell types and secreted 
from monocytes and lymphocytes (Abidi & Xirodimas, 2015), and it induces the synthesis 
and secretion of IFN from lymphocyte B cells, implying that the role of ISG15 is like a 
cytokine that modulates the immune response (Kurz et al., 2005). Although the biological 
activities of ISG15 have not yet been fully elucidated, it is clear that the ISG15 gene 
modulates diverse cellular and physiological functions.
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Effect of the ISG15 Gene on Embryonic Development in Sheep
	 The induction of ISG15 in response to IFN (Dzimianski et al., 2019) is mediated by 
an intracellular transduction signal system involving type I IFN receptors STAT1, STAT2 
and IRF (Morales & Lenschow, 2013). It is presumed that ISG15 regulates endometrial 
receptivity in implantation, survival, growth and development of the conceptus (embryo 
and associated extraembryonic membranes; Johnson et al., 1999). There is a significant 
increase in ISG15 gene expression in the ovine uterus at 15 days of gestation (Guo et al., 
2020). Expression of this gene has been found in parts of the stroma along the utero-
placental interface in gestation. In addition, results from some studies demonstrate that 
ISG15-conjugated protein levels increase and then decrease during gestation (Alak et 
al., 2020), which indicates that it is a biologically active molecule that responds to IFN 
signaling from the conceptus and which temporarily targets proteins for regulation and 
modification associated with the gestation process ( Jain et al., 2012). Endometrial ISG15 is 
not simply a consequence of an antiviral state induced by high levels of IFN in the lumen 
of ruminants at gestational recognition, but is a uterine response to conceptus processes; 
development, implantation and placentation ( Joyce et al., 2005).

CONCLUSIONS
	 The IFN gene acts via paracrine in the endometrium and endocrine in the CL to exert its 
anti-luteolytic effects; this triggers progesterone production to be maintained and maternal 
recognition of gestation to occur. High concentrations of P4 in maternal recognition of 
gestation have been associated with lengthening of the conceptus and an increase in IFN 
production and higher gestation rates. IFN induces positive regulation of several ISG 
genes including the ISG15 gene, which is involved in maternal immunoregulation and 
other functions in early gestation in the ewe, such as regulation of endometrial receptivity 
during implantation.
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