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ABSTRACT
Objective: To review and discuss the invisible and silent role of the activity of earthworms, which are 
considered “agroecosystem engineers”.
Design/methodology/approach: A database search of scientific articles published in Mexico and worldwide 
was performed.
Results: The literature reviewed shows that earthworms constitute the most abundant biomass in the vast 
majority of tropical agroecosystems. In addition, earthworms have long been shown to improve a) soil structure; 
b) interaction with symbiotic microorganisms; c) nutrient mineralization and availability; d) pollutant removal; 
e) regulation of foliar herbivory; and f) crop yields.
Limitations on study/implications: Most studies have been conducted in laboratories and greenhouses.
Findings/conclusions: Earthworms increase soil quality and agricultural productivity. Their protection, 
promotion, and management are suggested in order to manage, preserve, and restore soil health, as well as to 
ensure a sustainable crop production.

Keywords: Regenerative Agriculture, Environmental Services, Traditional Agriculture, Bioindicators, 
Bioremediation.

INTRODUCTION
	 The presence of earthworms in crop fields is as old as agriculture. Plants have likely 
evolved along with earthworms (Blakemore, 2009; Ortiz-Ceballos et al., 2019); in other 
words, they are an essential biological component of sustainable agroecosystems. However, 
conventional agriculture is frequently criticized for its negative impact on soil quality and 
human health. A better management of earthworms living in crop fields can solve this 
problem (Bertrand et al., 2015). In fact, agricultural management studies and programs 
aimed at increasing soil fertility, degrading organic pollutants, and increasing crop yields, 
among other things, do not usually take earthworms into consideration.
	 Before the development of artificial fertilizers and agricultural mechanization, the 
essential role that earthworms play in agroecosystems had already been suggested by 
Aristotle, Darwin, and other scientists (Van Groenigen et al., 2019). However, earthworms 
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are commonly known and referred to as Eisenia fetida (used in worm composting or 
vermicomposting), when in fact the soils of various terrestrial ecosystems and agroecosystems 
are home to a vast diversity of earthworms (Villalobos-Maldonado et al., 2017). Scientists 
see earthworms as “ecosystem engineers” as a result of the profound agroecological impact 
they have on the physicochemical and biological properties of soil (Blakemore, 2009). Most 
of the studies focused on earthworms have used species adapted to crops, most of which 
are considered invasive; for instance, in the case of the tropical regions of Mexico and 
the world, it is very common to find the Pontoscolex corethrurus earthworm in conventional 
agroecosystems —which use fertilizers, herbicides, pesticides, and tillage— and in industrial 
and urban areas —polluted with heavy metals, crude oil, and others (Taheri et al., 2018; 
Ortiz-Gamino et al., 2020; Ortiz-Ceballos et al., 2019). In Mexico, the native species 
Balanteodrilus pearsei has a remarkable presence in traditional agroecosystems (Ortiz-
Ceballos et al., 2004; Huerta et al., 2005; Fragoso and Rojas, 2014; Fragoso et al., 2015). 
In this review, written from an agroecological viewpoint, we analyze the largely ignored 
earthworm services and their potential to encourage agricultural sustainability in Mexico.

Species diversity in Mexico and the world
	 Earthworms are segmented worms with terrestrial habits. Their lifecycle is synchronized 
with the soil’s temperature and moisture and their length (1 cm-1 m) and width (2mm-3 cm) 
may vary. They belong to the phylum Annelida, class Clitellata, and order Crassiclitellata 
(Fragoso and Rojas, 2014). Currently, 5,900 to 6,000 species live in the majority of moist 
soils in the world; however, it is unlikely to find them in arid and cold areas (Fragoso 
and Rojas, 2014). There are more earthworm species in Mexico —102 species, equally 
distributed among native and introduced species— than in several European countries, 
while in Latin America only Brazil, Colombia, and Ecuador have more species (Fragoso 
and Rojas, 2014). The most studied tropical regions have been eastern and southeastern 
Mexico. Veracruz, for instance, has the largest number of known species, followed by 
Chiapas, Tamaulipas, and Tabasco (Fragoso and Rojas, 2014). The species diversity in 
tropical agroecosystems is larger than in temperate ones: it varies between four and six 
species and is rarely larger than ten (Fragoso and Rojas, 2014).

Ecological categories and/or functional groups
	 Earthworms are grouped in ecological categories or functional groups based on their 
color, size and body shape, location in the soil, burrowing capacity, and food preference 
(Bertrand et al., 2015; Van Groenigen et al., 2019). Unpigmented endogeic earthworms 
build horizontal tunnels in the topsoil and consume soil, organic matter, and soil organisms. 
Meanwhile, epigeic earthworms live in the soil surface and feed on decaying vegetable 
material. Finally, the anecic earthworm species are pigmented, they build permanent 
vertical tunnels or burrows in the mineral layers of the soil, feed on vegetable material, and 
ingest soil (Bertrand et al., 2015; Van Groenigen et al., 2019).
	 In Mexico, 92% of earthworms are endogeic (soil feeders). The ten most common species 
in agricultural soils are: a) introduced species: Pontoscolex corethrurus, Octalasion tyrtaeum, 
Amynthas gracilis, Dichogaster bolaui, and Aporrectodea trapezoides; and b) native species: 
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Phoenicodrilus taste, Balanteodrilus pearsei, Diplotrema murchiei, Protozapotecia aquilonalis, and 
Lavellodrilus parvus (Fragoso and Rojas, 2014). By contrast, the widely known epigeic Eisenia 
fetida (“California red worm”) does not dwell in Mexican agricultural soils.

Population size
	 Earthworm abundance and diversity are determined by crop type, agricultural practices, 
and the organic residues added to the soil (Manono, 2016). The change in land use also 
alters the diversity, abundance, and distribution of earthworms. In addition, their survival 
depends on moisture, temperature, texture, pH, and on symbiont soil microorganisms 
(Bertrand et al., 2015). Earthworms are therefore assessed for their abundance and 
biomass. In the tropical regions of Mexico, earthworms have been found in the following 
type of soils: Arenosols, Fluvisols, Vertisols, Acrisols, Luvisols, Phaeozems, Leptosols, and 
Andosols. A greater abundance (ind/m2) of earthworms in these soils has been registered 
in grasslands (76-704), followed by lands used for coffee (482), cocoa (170), citrus (145), 
eucalyptus (115), maize (51-222), home gardens (20-110), rain forests (31-170), fallow (298), 
and others (Ortiz-Ceballos et al., 2005; Huerta et al., 2005; Uribe et al., 2012; García-Pérez 
et al., 2017).

Soil structure
	 Earthworms choose mineral and organic particles according to the ecological categories 
to which they belong (Bertrand et al., 2015; Sánchez-Hernández, 2019). When endogeic 
and anecic earthworms consume soil for food and to burrow (to build galleries and nests), 
they mix it in their intestine and produce aggregates (excreta) that contain fragments of the 
organic matter, organisms, and minerals that were found in the ingested soil. Consequently, 
earthworm activity contributes to soil formation through the improvement of porosity and 
aggregation by providing more (Bertrand et al., 2015): a) water flow and retention; b) gas 
exchange; c) creation of habitats for organisms (microfauna and mesofauna); d) availability 
of easily absorbed nutrients; e) root growth and carbohydrate release; and f) nutrient 
absorption for plants.
	 Earthworm soil ingestion rates are highly variable: 1-30 g of dry soil/g fresh weight/day 
(Bertrand et al., 2015). Ingestion has a negative relation to age and size: juveniles consume 
more soil than adults, while smaller ones consume more than larger ones (Bertrand et al., 
2015). Therefore, earthworms are capable of regenerating the structure of compacted soils.

Symbiont microorganisms
	 The most common impact of earthworm activity can be seen on soil microorganisms and 
it takes place through two compartments: gastrointestinal tract (internal) and movement 
and feeding (external), associated with the improvement of soil structure (Bertrand et 
al., 2015, Medina-Sauza et al., 2019; Li et al., 2021). In the first case, some studies have 
demonstrated the presence of symbiont microorganisms that dwell in the gastrointestinal 
tract (bioreactor). In addition, earthworm eggs and nephridia (excretory organs) host 
symbiotic microbiomes (Aira et al., 2018; Li et al., 2021). In the second case, the earthworm 
mechanical activity modifies habitats and microbial communities that dwell in the soil. 



102 Agro productividad 2021. https://doi.org/10.32854/agrop.v14i12.2029

The latter obtain a double benefit from earthworms’ movement: they either adhere to their 
bodies or they are ingested by earthworms, survive, and are subsequently scattered (Aira 
et al., 2018; Medina-Sauza et al., 2019; Li et al., 2021). Tunnel walls, excreta, and nests 
are microenvironments with a high microbial and enzyme activity (Van Groenigen et al., 
2019). Therefore, the presence of earthworms in the soil promotes a greater abundance 
of symbiont microorganisms of the phyla Proteobacteria, Actinobacteria, Firmicutes, 
Acidobacteria, Planctomycetes, Bacteriodetes, Nitrospirae, and Chloroflexi, that are 
essential for the survival of earthworms; these microorganisms are capable of degrading 
organic matter, removing pollutants, releasing easily-absorbed nutrients, and promoting 
plant growth (Ortiz-Ceballos et al., 2019; Medina-Sauza et al., 2019; Li et al., 2021). 

Soil detoxification
	 Bioremediation has become a usual means to reduce the concentration and toxicity of 
soil pollutants (Hickman and Reid, 2008; Datta et al., 2016; Villalobos-Maldonado et al., 
2017; Sánchez-Hernández, 2019). During the last decade, different studies have pointed 
out that the impact of the physical (improvement of airing and aggregation), chemical 
(alteration of pH and OM), and biological activity of endogeic and anecic earthworms 
on the degradation of crude oil, heavy metals, pesticides, and herbicides, among other 
things has increased (Hickman and Reid, 2008; Datta et al., 2016; Sánchez-Hernández, 
2019). Environmental works that seek to remedy polluted soils do not take earthworms 
into consideration (Hickman and Reid, 2008; Datta et al., 2016; Sánchez-Hernández, 
2019), despite the fact that P. corethrurus, Glossodrilus sp., Dichogaster saliens, Protozapotecia 
australis, and Onychochaeta windlei earthworms dwell in soils that have been polluted by 
the oil industry of Veracruz and Tabasco (Zavala et al., 2013; Hernández-Castellanos et 
al., 2013a; García-Segura et al., 2018). In addition, toxicological trials have shown that P. 
corethrurus avoids and/or repels concentrations above 10,000 mg of total crude petroleum 
hydrocarbons (TPH))/kg of dry soil and the median lethal concentration (CL50) of 3,067.3 
mg TPH/kg (Cuevas-Díaz et al., 2017). In Mexico, bioremediation studies showed that the 
presence of P. corethrurus and organic amendments reach a 35.6% reduction of benzo(a)
pyrene (Hernández-Castellanos et al., 2013b) and 86.0% of TPH (Rodríguez-Campos et al., 
2019). Furthermore, earthworms have been found to increase the availability and mobility 
of essential (Zn, Cu, Mn, Fe) and non-essential (Cd, Pb, Hg) metals in both polluted and 
non-polluted soils (Taheri et al., 2018). P. corethrurus, for instance, significantly reduced the 
amount of Pb; additionally, it promotes the Pb phytoextraction capacity of Lantana camara 
(Taheri et al., 2018). Finally, this species tolerates Carbaril (insecticide) concentrations, 
but Carbendazim (fungicide) and Carbofuran (insecticide) have a lethal effect on it. The 
response of P. corethrurus to herbicides (glyphosate) is variable: the use of glyphosate in 
coffee crops reduces earthworm abundance and biomass (García-Pérez et al., 2014), but 
it does not affect reproduction in the laboratory (García-Pérez et al., 2016). Hickman and 
Reid (2008) and Datta et al. (2016) have therefore suggested that endogeic earthworms can 
be used as indicators of agricultural, industrial, and urban soil health, as well as to restore 
degraded soils.
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Nutrient availability 
	 Since they consume and degrade a vast diversity of organic materials, earthworms 
directly affect soil fertility, increasing total OM (40-48%), total P, and total N concentrations 
(Van Groenigen et al., 2019). This is the result of biochemical transformation processes that 
occur in the digestive tract of earthworms and that involve: a) production of endogenous 
cellulases (Ean-Eg, EF-EG2, and GHF9); b) association with intestinal microbiota 
(Protobacteria, Firmicutes, Actinobacteria, Chloroflexi, and Bacteroidetes); c) gene 
expression (transcriptome) that adjusts their digestive system (salivation, gastric acid, and 
pancreatic secretion); d) improvement of the digestive efficiency based on caecum type; and 
e) association with nephridial bacteria (Pedobacter) (Ortiz-Ceballos et al., 2019). It has thus 
been demonstrated that total element concentration substantially increases in earthworm 
excreta: 241% and 84% for mineral N and available P, respectively (Van Groenigen et 
al., 2019); moreover, there is a significant increase in pH (0.5 units), in cation exchange 
capacity (40%), and in base saturation (27%). In addition, earthworms accumulate, store, 
and recycle carbon and nitrogen in their biomass. They have a low carbon assimilation 
efficiency (2-27%; maximum: 70%), depending on the species, density, organic matter 
quality, and temperature. Nonetheless, the amount of nitrogen circulating through their 
biomass is higher than carbon —the estimated values fluctuate between 60 and 100 kg/ha/
year—, which suggests an important flow of this nutrient in agroecosystems. Therefore, 
an appropriate management of organic residues or management practices (cover crops, 
intercropping, crop rotation, and no-till farming or minimum tillage), can maintain 
abundant earthworm populations, in order to synchronize the release of easily absorbed 
nutrients that will then be available for plants when they need it. This suggests the need 
to design and improve agroecosystems that maintain soil fertility to achieve a sustainable 
crop production (Bertrand et al., 2015) —for instance cocoa, coffee, maize, and other 
agroecosystems in which the farmers of southeastern Mexico are involved (Brown et al., 
2004; Ortiz-Ceballos et al., 2005; Huerta et al., 2005; Juárez-Ramón and Fragoso, 2014; 
Fragoso et al., 2015; García-Pérez et al., 2017). Finally, earthworms are soil improving 
agents that cannot be studied separately from agroecosystems (Van Groenigen et al., 2019) 
(Figure 1).

Earthworm-plant-insect interaction
	 Almost nothing is known about the effects of soil organisms on a vast range of natural 
enemies: predators and parasitoids (Wurst, 2013; Heinen et al., 2018; Thakur et al., 2021). 
Although conceptual frameworks are well developed and some interactions are well studied 
(e.g., mycorrhizae), gaps still exist regarding the biodiversity knowledge about other taxa 
that are closely associated with plant roots, such as earthworms (Shelef et al., 2019; Li et al., 
2021). Soil organisms play a significant role in the configuration of plant-insect interactions 
in the field, with general patterns for some taxa, such as earthworms (Heinen et al., 2018). 
Results show that plants use earthworm excreted nutrients and assimilate them into their 
roots, leaf tissue, and phloem sap, which is sucked by aphids (Shelef et al., 2019; Thakur 
et al., 2021). This, in turn, shows that earthworms in the soil and aphids on the plants are 
functionally interconnected. Earthworm presence increased the production of the plants’ 
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Figure 1. Effects of the native tropical earthworm Balanteodrilus pearsei on the growth of the corn crop. Trays with 
labels: GreenSoilLegume FoliageEarthworm; BlueSoilLegume Foliage; RedSoilEarthworm; 
YellowSoilEarthworm.

chemical defenses against cell feeders (trips) by 31% and their resistance against trips by 
81%. Both results were associated to earthworm abundance and diversity (Xiao et al., 
2017). Results suggest the need of a better integration of soil fauna into plant-herbivore 
interaction studies, both in applied and basic research. This opens up opportunities to 
explore the manipulation of soil organisms in agriculture or ecosystem restoration. Some 
groups can be promising agents for the improvement and protection of crop yield and can 
affect plant diversity on the soil at a community level, which allows the use of soil organisms 
to guide vegetation development (Wurst, 2013; Heinen et al., 2018) (Figure 2,3,4,5).

Plant growth and productivity 
	 Epigeic, endogeic, and anecic earthworm activity has an important beneficial effect 
on plant growth and productivity because it: a) provides a greater amount of nutrients; 
b) improves soil structure; c) stimulates microbial symbionts of plants; d) controls pests 
and illnesses; and e) produces plant growth regulating substances (Ortiz-Ceballos et al., 
2007; Van Groenigen et al., 2014). During their assessment of the three main basic crops 
(corn, wheat, and rice) and pastures in 58 studies conducted in almost every continent—

Figure 2. Effect of the native tropical earthworm Balanteodrilus pearsei on the growth of the roots of the corn 
crop: a) SoilEarthworm; b) SoilLegume Foliage; c) SoilEarthwormLegume Foliage.

a b c
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Figure 3. Construction of galleries and production of excreta of the native tropical earthworm Balanteodrilus 
pearsei.

Figure 4. Exotic tropical earthworm Pontoscolex corethrurus.

Figure 5. Construction of galleries and production of excreta of the exotic tropical earthworm Pontoscolex 
corethrurus.
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save in Antarctica—, Van Groenigen et al. (2014) determined that earthworms significantly 
increased crop yields (25%), aerial biomass (23%), roots (20%), and total biomass (21%). The 
most important effects on grain production are achieved with a 30-40 g fresh weight/m2 
biomass (Van Groenigen et al., 2014). Nevertheless, ecological, and agricultural studies 
have been conducted for the handling of only 11 out of 102 species in Mexico. Among 
them P. corethrurus, Polypheretima elongate, and B. pearsei stand out as a result of their potential 
in situ use in agroecology and/or in regenerative agriculture (Fragoso and Rojas, 2014). 
For instance, the presence of B. pearsei and P. corethrurus earthworms with the velvetbean 
legume (Mucuna pruriens var. utilis) significantly increased the growth and production of 
corn, vanilla, and Roma tomato crops (Ortiz-Ceballos et al., 2007); moreover, used in 
nurseries, they boosted the growth of Abies religiosa (Sánchez-Velásquez et al., 2019) and 
Quercus insignis forest seedlings (Avendaño-Yáñez et al., 2017). However, domestication 
has turned hundreds of traditional plant species to intensive farming (Porter and Sachs, 
2020). Farming practices and intense selective breeding used to increase yields can involve 
a hidden cost: the interruption of interactions between plants and earthworms (Porter and 
Sachs, 2020). It is therefore suggested that, in order to improve a sustainable agricultural 
production, agroecological research must develop methods to optimize relations between 
cultivated plants and soil organisms (Porter and Sachs, 2020).

CONCLUSIONS
	 Over the last 150 years, the relevance of earthworms and their evolution with 
domesticated plants have been attested (Braga et al., 2016). Therefore, it is very likely that 
earthworm services contribute to increase agricultural sustainability improving human 
health (Bertrand et al., 2016). This suggests the need of long-term field studies about the 
impact of earthworms on crop production. In addition, agricultural grants and funding are 
required to design and promote agroecosystems that take into account the intrinsic value 
of earthworms and the effect of crop practices on earthworm diversity, abundance, and 
activity (Bertrand et al., 2015; Scown et al., 2020).

Figure 6. Cocoon and excreta production of the endogenous earthworm Pontoscolex corethrurus.
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