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ABSTRACT
Objective: To perform a brief introspective regarding the biotechnological management of microorganisms in 
the rhizosphere, its implementation in bioprocesses, and its practical application in field.
Design/methodology/approach: Bibliographic review regarding the beneficial effects of Arbuscular 
Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Rhizobacteria (PGPR), which can be applied in 
bioformulations.
Results: There are numerous documented applications of AMF and PGPR —both on laboratory and industrial 
scale for bioformulation production— aimed to improve crop yield and to provide resistance against abiotic 
stress and pests. Non-conventional uses are also shown in non-agricultural areas.
Study limitations/implications: AMF and PGPR are widely recognized in agriculture due to their 
inherent ability to compete in harsh conditions within ecosystems, metabolism versatility, and production of 
secondary metabolites that enable beneficial interactions with plants and other microorganisms. However, 
industrial production of AMF presents challenges, as a result of their obligate biotrophs condition and a lack of 
compatibility with traditional bioprocesses.
Findings/conclusions: The knowledge generated throughout rhizosphere research should be applied in the 
industry, in order to extend its use in agriculture.

Keywords: Biotechnology, Bioprocess, Industrial microbiology, Arbuscular mycorrhiza, Plant growth-
promoting rhizobacteria.

INTRODUCTION
	 Currently, awareness regarding the risks of agrochemicals has experienced a considerable 
increase. These materials are regulated and even banned in some countries, because their 
use has adverse side effects on the environment, the biota, and human health. As a result 
of the changes that their uncontrolled use has caused to the ecosystems, a search for a 
method that improves crops conditions, without recurring to chemical products, have been 
undertaken. From the point of view of the soil ecosystems studies, the knowledge about the 
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interaction of plants and rhizosphere microorganisms offers a viable alternative to improve 
agricultural practices, not just increasing fertility, but also providing plants with resistance 
against pests and abiotic stress.
	 In the context of agricultural practices, the biotechnical management of rhizosphere 
microorganisms in the field is compatible with organic agriculture techniques. The market 
offers bioformulations —which use plant-growth promoting rhizobacteria (PGPR) and 
arbuscular mycorrhizal fungi (AMF)— to improve crops; therefore, the need to implement 
more technologies related to favorable biotic interactions is increasing and opens a niche to 
implement new developments or to improve existing developments.

Biotechnology aimed at the application of microorganisms in agriculture
	 Biotechnology is an interdisciplinary approach that uses live organisms to obtain 
products of overall interest for human activities. This technology uses algae, bacteria, 
fungi, yeast, plant and higher animal cells, or subsystems of any of them, as well as 
isolated compounds of live matter (Bhatia and Goli, 2018). This discipline is as old as 
civilization itself: it allowed the development of plants, the domestication of animals, and 
the production of food —including cheese, yoghurt, bread, vinegar, beer, and wine (Arfin 
and Sonawane, 2019). Biotechnology includes several areas that can or cannot involve 
genetic characterization or manipulation. Although progress in plant and microorganism 
genetic engineering has benefited agriculture, there are areas that do not involve genetic 
manipulation —such as classical biotechnology and bioprocesses— and which have great 
potential, mainly for the improvement of the quality of agricultural products and crop 
productivity.
	 Biochemical or bioprocess engineering enables the development of processes and 
equipment that provide products of interest —mainly on an industrial scale— through 
fermentation processes that seek to produce greater quantities and achieve a higher 
quality of a particular product (cells, spores, primary or secondary metabolites) (Doran, 
2013). Industrial microbiology is the area of knowledge that studies microorganisms 
that are handled through bioprocesses. This area deals with large-scale fermentations 
and compensates the limitations for their application, such as substrata cost and quality, 
operational costs, purity of the starter culture, nutritional needs of the organisms, product 
purification, product yield regarding the substrata, and non-optimized metabolic pathways 
(Behera et al. 2019).
	 Within the procedures to establish a bioprocess, a strain must be chosen —whether 
from the environment or a collection—, in order to obtain a highly-concentrated product 
of interest. Subsequently, the process must be optimized: first in the lab and then at a pilot 
scale, before escalating it to an industrial level. Optimization means a fair and appropriate 
use of resources, in order to obtain the maximum potential yield of the desired product. 
Fermentations are influenced by such variables as: agitation, ventilation, temperature, 
and pH, as well as more specific elements, depending on the microorganism used 
for this purpose. All these systems have operational costs —such as power, fuel, water, 
and maintenance, among other supplies and expenditures— that directly influence the 
profitability of the process.
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	 Industrial microbiology has been interested in rhizosphere microorganisms, because 
their application is relevant to sustainable agriculture (Barea, 2015) and non-agricultural 
areas. As a result of their favorable interaction with the ecosystem, they promote plant 
growth and long-term pathogen control, reducing the use of synthetic fertilizers and pest-
control substances.
	 Interactions between the plant roots and the rhizosphere microorganisms take 
place when the plant attracts the symbiotic organism, which interacts with its root. 
In its turn, the microorganism must distinguish itself as a symbiotic organism, rather 
than a pathogen; subsequently, it gains a regulated entry into the root. The carbon 
photosynthetically fixed by the plant (photosynthates) is directly transferred to the 
below-ground biomass through root exudates, providing nutrients for epiphytic and 
saprophytic organisms —which accelerate the decomposition of the soil organic 
matter— or endophytic organisms —which are associated to the plant cells, through 
N-fixing microorganisms or mycorrhizal symbiosis (Horwath, 2007).
	 This results in a situation where each organism must take part in a complex and 
structured communication that enables the successful establishment of the symbiosis. 
The term “molecular dialogue” refers to chemotaxis and was coined to describe the 
communication between the plant roots and the microorganisms (Perotto and Baluška, 
2012). This process takes places through the production of secondary metabolites, which 
have different functions, including: signaling molecules, growth regulators, organic acids, 
enzymes, antibiotics, biopolymers, etc.

Biotechnological management of arbuscular mycorrhizal fungi and 
significant challenges
	 The arbuscular mycorrhiza (AM) is made up of fungi which penetrate the vascular plant 
roots cortical cells; AM is an advantage for vegetal growth. They promote the absorption 
of mineral nutrients and water, because their hyphae —which are thinner than the roots— 
can penetrate small pores that are inaccessible to the roots (Allen, 2011). Not only does AM 
improve the nutrients that the plants receive, it also enhances their resistance to abiotic 
stress (salinity, drought, and floods), as well as their resistance to diseases (Berruti et al., 
2016). The AM contributes to the degradation of organic matter producing extracellular 
enzymes and to soil stabilization producing proteins, such as glomalin and hydrophobin 
(Leinweber et al. 2013). AMFs are considered primary biotic compounds of the soil; 
therefore, the absence of mycorrhizas is considered abnormal for most vegetable species, 
resulting in an inefficient functioning of the ecosystem (Jansa and Gryndler, 2010).
	 AMFs are obligate biotrophs, because they must establish an association inside the plant 
roots to produce propagules; therefore, the common bioprocesses for the heterotrophic 
microorganism culture are not favorable for this type of fungi. The AMF production is 
carried by the plant and its symbiont in different systems: 1. Substrata culture: sand or 
perlite —in bags, pots, or containers inside a greenhouse—, in non-sterile conditions; it 
does not require complex techniques and has a low cost, although it is difficult to keep it 
safe from pollutants and particles (Millner and Kitt, 1992). 2. Substrata free: hydroponic 
and aeroponic ecosystems, which use nutritive solutions and require precolonized plants. 
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These systems allow an improved spore harvest and reduce the risk of contamination; 
however, they have disadvantages, such as the greater complexity of the infrastructure and 
the high risk of bacteria and algae contamination of their solutions (Ijdo et al., 2011). 3. In 
vitro AMF culture in tissue (monoxenic culture): this system may or may not require 
transformed roots to produce propagules. It prevents contamination throughout the 
process and enables a more efficient implementation, in a greater scale than the previous 
two systems (Kokkoris and Hart, 2019). The disadvantages are its high costs and the need 
for highly-qualified technical staff.
	 Hard work is being carried out to improve the AMF culture conditions. Currently, 
no processes that allow the large-scale, low-cost propagule production are available. 
This is a huge disadvantage for its industrial production and its large-scale application 
in the field.
	 Although there are different types of reactors for cultures submerged with mechanical 
or pneumatic agitation (airlift reactors), they have adverse side effects, such as root 
asphyxia. This is the result of the low solubility of oxygen in liquid environments 
(1.22103 mol dm3 at 25 °C at 1 atm in pure water) (Xing et al., 2014), which 
causes root asphyxia and the loss of feasibility. In a liquid culture environment, the 
lack of oxygen is usually compensated with enough aeration (which also works as 
an agitation in the airlift reactors) and an increase in the power of the agitation (for 
reactors with a mechanic agitator). In vegetable tissue cultures, the conditions for the 
bacteria and filamentous fungi cannot be used, because they produce cell stress and the 
AMF are not adapted to the said culture conditions. The approach for AMF cultures 
consists in other techniques which send oxygen to the roots, whether they have been 
transformed or not, in similar conditions to those of their natural environment, but 
retaining contact with the culture medium, without producing root asphyxia. Table 1 
shows several patents regarding AMF bioformulation production for its application in 
the field. These bioformulations are made up of spores harvested in in vitro production 
conditions. Additionally, a proposal to produce AMF propagules in roots —whether they 
have been transformed or not— using a gas-phase reactor was made. The international 
WO2019/003240Al patent suggests that, in order to achieve a proper root oxygenation 
and nutrition, they should be in contact with the disperse culture medium as fog, in a 
closed system under sterile conditions.

The importance of bioinput for agriculture
	 Bioinputs are currently being used as an alternative or complement to conventional 
agrochemicals. According to their functionality, they are classified as: bioinsecticides, 
biotech insect repellents, biofungicides, biofertilizers, biostimulants, pest-control substances, 
and inoculants. This type of preparations may include substances that achieve a desirable 
nutritional effect or an efficient pest and disease control; they can include plant, mineral, 
animal, and microbial elements, and even living or latent microorganisms. Inoculants may 
contain a single or a combination of microorganisms. Their formulas can include other 
substances. Depending on their effect, they can also be classified as biostimulants, pest-
control substances, and biofertilizers.



23 Agro productividad 2021. https://doi.org/ 10.32854/agrop.v14i12.1988

Ta
bl

e 
1.

 E
xa

m
pl

es
 o

f p
at

en
ts 

th
at

 im
pl

ic
at

e 
th

e 
us

e 
of

 A
M

F 
in

 b
io

fo
rm

ul
at

io
ns

 a
nd

 te
ch

no
lo

gy
 fo

r t
he

 p
ro

du
ct

io
n 

of
 p

ro
pa

gu
le

s i
n 

bi
or

ea
ct

or
s. 

Pa
te

nt
 / 

Pr
ot

ec
tio

n
D

ev
el

op
m

en
t

C
ou

nt
ry

/Y
ea

r/
Ap

pl
ic

an
t

D
es

cr
ip

tio
n

Sp
ec

ie
s

Am
ou

nt
 o

f p
ro

pa
gu

le
s

W
O

20
19

/0
03

24
0A

l /
In

te
rn

ac
io

na
l

A
 n

ov
el

 b
io

re
ac

to
r f

or
 m

as
s 

pr
od

uc
tio

n 
of

 a
rb

us
cu

la
r 

m
yc

or
rh

iz
al

 fu
ng

i

In
di

a 
/2

01
9/

 T
he

 E
ne

rg
y 

an
d 

R
es

ou
rc

es
 In

sti
tu

te
 

G
as

 st
at

e 
bi

or
ea

ct
or

:
fu

ng
al

 sp
or

e 
cu

ltu
re

 a
nd

 
tr

an
sfo

rm
ed

 ro
ot

s i
n 

an
 

as
ep

tic
 sp

ac
e,

 w
ith

 th
e 

cu
ltu

re
 m

ed
iu

m
 d

isp
er

sin
g 

as
 a

 m
ist

, r
ec

irc
ul

at
in

g 
th

e 
co

nd
en

sa
te

s

N
ot

 sp
ec

ifi
ed

 
It

 d
oe

s n
ot

 sp
ec

ify
 

op
er

at
in

g 
ca

pa
ci

ty
; i

t o
nl

y 
en

su
re

s t
o 

ob
ta

in
 ro

ot
s i

n 
4 

w
ee

ks

U
S 

10
,3

62
,7

87
 /

Es
ta

do
s U

ni
do

s
M

et
ho

d 
fo

r p
ro

pa
ga

tin
g 

m
ic

ro
or

ga
ni

sm
s w

ith
in

 
pl

an
t b

io
re

ac
to

rs
 a

nd
 st

ab
ly

 
sto

rin
g 

m
ic

ro
or

ga
ni

sm
s 

w
ith

in
 a

gr
ic

ul
tu

ra
l s

ee
ds

U
ni

te
d 

St
at

es
 /2

01
9/

 In
di

go
 

AG
, A

us
tr

ia
n 

In
sti

tu
te

 o
f 

Te
ch

no
lo

gy
 G

M
BH

C
ul

tiv
at

io
n 

of
 e

nd
op

hy
tic

 
or

ga
ni

sm
s i

n 
pl

an
t t

iss
ue

s 
an

d 
th

ei
r s

to
ra

ge
 in

 se
ed

s 
to

 im
pr

ov
e 

th
ei

r s
he

lf 
lif

e

G
lo

m
er

om
yc

ot
a,

 m
ez

cl
as

 
de

 o
rg

an
ism

os
 d

e 
bi

oc
on

tr
ol

 y
 ri

zo
bi

os
 

N
ot

 sp
ec

ifi
ed

U
S 

10
,2

38
,1

03
 /

Es
ta

do
s U

ni
do

s
R

hi
zo

bi
a 

an
d 

m
yc

or
rh

iz
al

 
gr

an
ul

ar
 fo

rm
ul

at
io

ns
 a

nd
 

m
ix

tu
re

s t
he

re
of

 

U
ni

te
d 

St
at

es
 /2

01
9/

 V
al

en
t 

Bi
os

ci
en

ce
s L

LC
Fo

rm
ul

at
io

ns
 w

ith
 

m
yc

or
rh

iz
al

 p
ro

pa
gu

le
s

N
ot

 sp
ec

ifi
ed

R
hi

zo
bi

a:
 1

x1
0

9  U
FC

/g

A
M

F 
pr

op
ag

ul
es

:  
fro

m
 

20
0,

00
0 

to
 6

00
,0

00
 p

er
 

gr
am

U
S 

8,
88

3,
67

9 
/

Es
ta

do
s U

ni
do

s
Li

qu
id

 m
yc

or
rh

iz
a 

co
m

po
sit

io
ns

 
U

ni
te

d 
St

at
es

 /2
01

4/
 

N
ov

oz
ym

es
 A

/S
Fo

rm
ul

at
io

ns
 w

ith
 

m
yc

or
rh

iz
al

 fu
ng

i 
pr

op
ag

ul
es

G
lo

m
us

 a
gg

re
ga

tu
m

, G
lo

m
us

 
br

as
ili

an
um

, G
lo

m
us

 
cla

ru
m

, G
lo

m
us

 d
es

er
tic

ol
a,

 
G

lo
m

us
 et

un
ica

tu
m

, 
R

hi
zo

gl
om

us
 fa

sc
ic

ul
at

um
, 

R
hi

zo
ph

ag
us

 ir
re

gu
la

ri
s, 

G
lo

m
us

 m
on

os
po

ru
m

, G
lo

m
us

 
m

os
se

ae
, G

ig
as

po
ra

 m
ar

ga
ri

ta

(M
yc

o 
A

pp
ly

 U
ltr

a®
)

28
6 

pr
op

ag
ul

es
 p

er
 

gr
am

, d
ry

 g
ra

nu
le

s o
r 

m
oi

stu
ri

za
bl

e 
po

w
de

r



24 Agro productividad 2021. https://doi.org/ 10.32854/agrop.v14i12.1988

	 The inoculant production process includes several stages: isolation of the strains with 
the best characteristics for the objective; efficient lab and field tests; fermentation methods; 
formulation viability; choosing the appropriate carrier; toxicology; industrial scaling; and 
quality control (Xavier et al., 2004; OʼCallaghan, 2016). Quality control is an aspect that 
must be particularly emphasized. Several aspects that are included in the regulations of 
several countries around the world must be taken into account, including: crop effectiveness 
and persistence; viable microorganism count in the product; survival of the organisms in 
the carrier; shelf life; carrier sterility; and compatibility with native microbiota. In Mexico, 
these aspects are governed by the NOM-077-FITO-2000 (https://www.gob.mx/senasica/
documentos/nom-077-fito-2000) standard, which is currently being modified.

Biotechnological management of plant growth-promoting bacteria (PGPB)
	 More and more mechanisms through which bacteria favor the promotion of plant 
growth are discovered every day. They can facilitate the availability of certain nutrients 
in insoluble forms —for example, in the release of siderophores and organic acids or the 
fixation of atmospheric nitrogen—, they diminish the competition for the substrate, they 
produce growth-regulating substances, and they interfere with the signals of antagonistic 
organisms, etc. (Souza et al., 2015; Ramakrishna et al., 2019). This type of mutualistic 
interaction allows the plant to improve its conditions, while the microorganisms increase 
their chances of surviving in a highly competitive environment. PGPB benefit their hosts 
through various action mechanisms, depending on the species and the colonization and 
development conditions.
	 Since survival in the rhizosphere faces highly competitive conditions, bacteria have 
an extremely high capacity to produce extracellular secondary metabolites (enzymes and 
other molecules) and to make the most of substrates from several sources and complexities 
(SantʼAnna et al., 2011; Eida et al., 2020). Table 2 shows various ways in which bacteria 
groups can be used for agriculture and other non-conventional activities (such as the 
production of industry-focused metabolites). This versatility is highly appreciated in 
practical applications, both in agriculture and other areas, including: bioremediation, 
biorefining, production of food, make-up or medicine additives, production of biopolymers, 
enzymes, and biosurfactants, etc.
	 The production of PGPB for their use as inoculants is an alternative to agrochemicals. 
Additionally, it leads to products with higher quality and greater yield, both individually 
and mixed with other organisms, such as AMF (Mishra and Arora, 2016).
	 Gómez-Merino et al. (2014), Ferrera-Cerrato et al. (2016), Mitter et al. (2021), and other 
researchers have highlighted the importance and need of soil microbiology knowledge to 
provide greater support for plant nutrition and agricultural production, from a sustainable 
and innovative point of view.

CONCLUSIONS
	 The rhizosphere microorganisms offer promising solutions to achieve a productive, 
sustainable, and eco-friendly agriculture; they also contribute to the bioremediation of 
polluted environments and the production of metabolites of interest for non-agricultural 

https://www.gob.mx/senasica/documentos/nom-077-fito-2000
https://www.gob.mx/senasica/documentos/nom-077-fito-2000
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areas. Biotechnology and its various branches provide alternative solutions to problems 
such as: crop quality, pollution, and the extensive use of agrochemicals. Specifically, 
they contribute to the establishment of bioprocesses related to the massive production 
of microorganisms whose effectivity for their extensive use in the field has been proven, 
depending on the problem that needs to be solved. Therefore, the knowledge about 
rhizosphere microbiology must establish a close collaboration with agricultural producers 
and the industries, in order to develop feasible large-scale solutions.
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