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ABSTRACT
Objective: to determine the distribution of D. viscosa in the vicinity of the Guadalupe Victoria Dam in Durango, Mexico, 

for the years 1990, 2010 and 2017.

Design/Methodology/Approach: Landsat satellite images were processed in order to carry out supervised classifications 

using an artificial neural network. Images from the years 1990, 2010 and 2017 were used to estimate ground cover of D. 

viscosa, pastures, crops, shrubs, and oak forest. This data was used to calculate the expansion of D. viscosa in the study 

area.

Results/Study Limitations/Implications: the supervised classification with the artificial neural network was optimal after 

400 iterations, obtaining the best overall precision of 84.5 % for 2017. This contrasted with the year 1990, when overall 

accuracy was low at 45 % due to less training sites (fewer than 100) recorded for each of the land cover classes.

Findings/Conclusions: in 1990, D. viscosa was found on only five hectares, while by 2017 it had increased to 147 hectares. 

If the disturbance caused by overgrazing continues, and based on the distribution of D. viscosa, it is likely that in a few 

years it will have the ability to invade half the study area, occupying agricultural, forested, and shrub areas.

Keywords: supervised classification, land cover, land change detection, invasive species, GIS 

INTRODUCTION

Dodonea viscosa (L.) Jacq) (Sapindaceae) is an evergreen shrub with wide 

distribution in Mexico and the world, thereby considered to be a 

cosmopolitan species (Harrington, 2008). It inhabits areas affected by livestock production or other disrupting factors 

in tropical or subtropical zones in Mexico (Rzedowsky, 1978); it is known by many names (Acosta, 2014), and in the 

study area as jarilla. In the state of Durango, Mexico, its presence has been detected along the eastern flanks of the 

Sierra Madre Occidental and in the San Pedro river basin (González-Elizondo et al., 2007), where it possibly spilled 

over from subtropical zones to temperate climate zones, invading transition areas along the eastern flank of the Sierra 

Madre Occidental. Due to its capacity to colonize disturbed areas, extensive areas can be found where this species 

is dominant, forming densely populated communities. Acosta (2016) studied the successional role of D. viscosa in 

Durango, finding that it is not an inhibiting species since it coexists with many others; however, wherever it establishes 
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itself, floristic diversity decreases. Landowners and ejidatarios (community 

landowners) have seen how this species reduces grass production on 

lands where extensive grazing activities take place, thus notably affecting 

livestock production. According to individual observations, wherever the 

shrub becomes established it begins an expansion process toward nearby 

zones, forming dense communities where livestock do not graze, being 

an unpalatable species for them (CONAFOR, 2019). The objective of this 

study was to determine the expansion potential of D. viscosa once it begins 

to establish itself in a specific area. The study was carried out in the areas 

surrounding the Guadalupe Victoria Dam in the municipality of Durango, 

Mexico, for the years 1990, 2010 and 2017. To this end, several areas with 

presence of this species were studied and satellite images from the Landsat 

platform were retrospectively analyzed to determine the rise or decline of 

this plant and the possible factors that allow its dispersal in time, as well as to 

contribute to preventing its dispersal. 

MATERIALS AND METHODS
To evaluate the changes in D. viscosa distribution throughout several decades, 

the area surrounding the Guadalupe Victoria Dam in Durango, Mexico, was 

selected. This dam’s catchment area is located to the west of Durango City 

(104° 48.182’ and 104° 43.912’ W, and 23° 51.478’ and 23° 58.120’ N) at an 

altitude between 1940 m and 2260 m, covering an area of 2,700 ha with 

secondary shrubland, oak-pine forest, grasslands, and D. viscosa shrubs (INEGI, 

2018a). It has a semidry temperate climate with summer rains; temperatures 

fluctuate between 16 and 18 °C and precipitation is approximately 500 mm 

(INEGI, 2018b). This area was selected because of observations that the 

distribution of jarilla has increased gradually within it. 

Image acquisition and processing

Landsat-4 TM, Landsat-5 TM, and Landsat-8 OLI satellite images were used 

from the first days of the month of October, from years 1990, 2010 and 2017, 

which were downloaded free of charge from the United States Geological 

Survey (available at http://glovis.usgs.gov/). These images were used to carry 

out a supervised classification to identify six different types of ground cover, 

which were: secondary scrubland (Ms), grassland (Ps), cropland (Cul), oak-

pine forest (Bqp), bodies of water (Ag), and areas with D. viscosa. The first 

categories are classifications made by the INEGI (National Institute of Statistics 

and Geography) for their land use and vegetation maps. Only D. viscosa was 

added, since it is the subject of this study and for having particular reflectance 

traits due to the yellowish-green color of its leaves. A back propagation 

artificial neural network (BPNN) was used for the supervised classification 

(SNAP, 2017). BPNN is widely used due to its structural simplicity and robust 

modelling of non-linear connections. The BPNN comprised a set of three 

layers (raster): an input layer, a hidden layer, and an output layer (Richards, 

1999). Each layer is a series of parallel processing elements (neurons or 

nodes). Each one of a layer’s nodes is linked to all the nodes of the following 

layer (Guo et al., 2013). 

The first step in BPNN supervised classification was to enter the input layer, 

which corresponded to the pixel values of the Landsat satellite bands. Then 

weights were assigned to the BPNN 

to produce analytic data based on 

the input values. These data were 

contrasted with the category to 

which each training pixel belonged, 

corresponding to georeferenced 

sites (Datum, WGS-84, 13N). A 

random stratified sampling method 

(Olofsson et al., 2013) was used to 

generate the reference data in the 

QGIS software (QGIS Development 

Team 2016). The 1990 training 

areas were obtained from the 

land use and vegetation map from 

INEGI’s series II. For 2010, the IV 

series was used, and for 2017, 300 

entries from the field and 19 entries 

from the Northeastern Mexican 

herbalist network’s database (www.

herbanwmex.net) were used. A 

total of 1,644 random points were 

sampled (Goodchild et al., 1994). 

The number of classes were: i) D. 

viscosa, 342 sites; ii) secondary 

shrubland, 382 sites; iii) oak-pine 

forest, 212 sites; iv) grassland, 419 

sites; v) crops, 180 sites; and vi) 

water, 109 sites. 

The class discrimination processes 

happened in the hidden layer, and 

the synapses between layers were 

identified through an activation 

function. A logistic function was 

used as well as a training rate of 0.20 

(Hepner et al., 1990; Richards, 1993; 

Braspenning and Thujisman, 1995). 

Learning occurs when adjusting the 

weights in the node to minimize the 

difference between the activation of 

the output node and the BPNN, then 

calculating the error in each iteration 

with the root-mean-square error 

(RMS). The output layer consisted 

of six neurons that represent the six 

classes of ground cover considered. 

Once the classifications of each of 

the Landsat images were achieved, 

changes in each class were detected 

through the Change Detection 
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algorithm with the Environment for Visualizing Images 

(ENVI)® software. The image designated as the initial 

state corresponded to the year 1990 and the final states 

were the images from 2010 and 2017. A change matrix 

was generated, with which the surface areas that were 

substituted by D. viscosa were calculated for each of the 

classes of vegetation ground cover. 

Classification accuracy

For the classification validation process, confusion 

matrixes were applied and analyzed with the procedure 

proposed by Jensen (1986), which is the most commonly 

used method for calculating the accuracy of global 

classification. This consists in calculating the omission 

and commission errors in order 

to calculate the percentage of 

error and its confidence limits, 

both for the total classification 

and for each category. For 

the image from 1990, 348 

verification sites were used; for 

2010, 1,646 sites were used; 

and for 2017, 2,099 sites were 

used. 

RESULTS AND
DISCUSSION
The best results for the 

supervised classifications by 

the BPNN algorithm were obtained after 400 iterations 

with learning rate values (RMS) of less than 0.08 and a 

global accuracy of 84.5 % (Figure 1).  

In the dispersion diagram, when comparing the red 

band versus the infrared band (NIR) of the OLI sensor for 

D. viscosa reflectance evidence, it was found that this 

species’ pattern had a very 

low reflectance percentage 

in the red band (10 %) and 

a mid-range reflectance 

percentage in the infrared 

band (35 %). This was very 

useful for the separability 

of the classes considered 

(Figure 2). 

In the 1990 image, 

classification accuracy was 

44.5 %, which is very low. 

However, given that INEGI 

map data were used (series II land use and vegetation) 

as well as existing collection data for that year, it was 

difficult to improve accuracy given the antiquity of the 

information. This table also shows that the D. viscosa 

class is confused with the shrubland class and the Bqp 

class (omission). However, the shrubland class is primarily 

confused with D. viscosa (commission). The total area 

covered by D. viscosa in 1990 (Table 1) was 6.8 ha, and 

according to Figure 3, it was found only in the southern 

part of the study area. On the other hand, the largest area 

corresponded to the shrubland class with 1289.8 ha. 

Agriculture covered a surface area of 284.7 ha, grassland 

covered 224.7 ha, and Bqp covered 577.6 ha. 

In the image from 2010 (Table 

2), the classification accuracy 

was 75.6 %, which is considered 

to be acceptable for this type 

of work (Hamlyn and Vaughan, 

2010). It was noted that, just 

as in the image from 1990, D. 

viscosa is mainly confused with 

Bqp and to a lesser degree with 

crops and shrubs; omission 

errors were reduced by 42 

% in relation to 1990, while 

commission errors were low 

in all classes except shrubland. 

The surface area covered by D. 

viscosa increased to 147.5 ha, showing a dotted patch 

distribution. The surface areas covered by the rest of 

the classes were: shrubland, 1491.7 ha; cropland, 382.4 

ha; grassland, 232.7 ha; and Bqp, 314.2 ha. The image 

from 2017 had a classification accuracy of 87 % due 

to an improved sensor and improved field verification 

points, and not with INEGI maps. Table 3 shows that D. 

viscosa is confused mostly 

with Bqp (omission) by 

5.8 %, and the rest of the 

classes are confused with 

D. viscosa (commission) by 

20.4 %. The surface area 

covered by this species rose 

to 222.0 ha. Its distribution 

is also in patches, although 

larger in size in relation to 

the imagen from 2010. The 

areas covered by shrubland 

were 1484 ha; cropland, 

164.4; grassland, 314.2 ha; 

Figure 1. Diagram showing BPNN learning; a simulation 
of less than 500 iterations is sufficient to achieve the su-
pervised classification.

Figure 2. Diagram of the dispersion of D. viscosa reflectance va-
lues. The red point shows the convergence point between both 
bands.
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Table 1. Contingency and errors for the 1990 classification. Total classification accuracy of 44.5%.
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Surface (ha)

1. D. viscosa 38 10 0 0 28 76 38 0.50 5 0.07 6.8

2. SM 5 51 25 59 47 187 136 0.73 15 0.08 1289.8

3. CRP 0 0 16 0 0 16 0 0.00 29 1.81 316.4

4. Gr 0 2 1 23 13 39 16 0.41 62 1.59 577.6

5. OPF 0 3 0 0 27 30 3 0.10 88 2.93 224.7

TOTAL 43 66 42 82 115 348 193   199 0.57 2415.3

*SMSecondary scrub, crpCrops, GRGrassland, OPFOak-pine forest.

Table 2. Contingency table and errors for the 2010 classification. Overall Accuracy of 75.6%.
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1. D. viscosa 132 8 21 0 68 229 97 0.42 38 0.17 114.5

2. SM 0 201 4 89 83 377 176 0.47 39 0.10 1491.7

3. CRP 22 16 406 0 5 449 43 0.10 33 0.07 164.4

4. Gr 16 15 8 401 11 451 50 0.11 91 0.20 314.1

5. OPF 33 0 0 2 105 140 35 0.25 167 1.19 232.7

TOTAL 8 401 442 496 277 1646 401   368 0.22 2317.7

*SMSecondary scrub, crpCrops, GRGrassland, OPFOak-pine forest.

Table 3. Contingency table and errors for the 2017 classification. Overall accuracy of 85.4%.

Class D. visc SM CRP Gr OPF TOTAL
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1. D. viscosa 342 2 0 0 19 363 21 0.06 74 0.20 147.0

2. SM 24 619 119 2 0 764 145 0.19 20 0.03 954.1

3. CRP 50 0 348 7 0 405 57 0.14 141 0.35 434.5

4. Gr 0 0 20 418 0 438 20 0.05 11 0.03 374.8

5. OPF 15 18 2 2 92 129 37 0.29 19 0.15 390.7

TOTAL 431 639 489 429 111 2099 280   265 0.13 2301.1

*SMSecondary scrub, crpCrops, GRGrassland, OPFOak-pine forest.

and Bqp, 232.7 ha (Figure 3 and 

Figure 4). 

As shown in Tables 1 and 3, as well 

as Figure 4, D. viscosa has gradually 

increased its ground cover. Figure 3 

demonstrates how D. viscosa, after 

establishing itself in a small area, 

begins to spread out from its original 

point; this was particularly evident 

in the changes seen from 2010 to 

2017. Table 1 shows that in 1990, 

D. viscosa covered a limited area 

of 6.8 ha, and most of the surface 

corresponded to shrubland. For the 

year 2010, the area covered by D. 

viscosa increased to 114.5 ha, and for 

the year 2017, it increased to 147.0 

ha. Figure 3 shows how in 1990, 

the species was limited to a small 

location to the south of the study 

area. In 2010, its distribution had 

grown to small patches throughout 

the whole area. However, by 2017 

these patches had spread out to 

form denser and more extensive 

stretches. Comparing the D. viscosa 

distribution map of 1990 and 2010 

with its distribution in 2017, as well 

as with its expansion rate, the results 
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suggest that without implementing measures to prevent 

its spread, in a few years the species could completely 

replace native vegetation. This has happened in other 

nearby locations in the south of the state of Durango, 

where the dominance of this species can be observed in 

large extensions of land (Acosta, 2016). 

Dodonaea viscosa is considered to be an invasive species 

thanks to its ability to colonize sites outside of its original 

distribution area (González Elizondo, 2007; Acosta, 

2016). Because of its widespread distribution in all of 

Mexico and since it is considered native in tropical and 

subtropical zones, it is not deemed an invasive species 

in some studies, but rather a native plant that colonized 

disturbed areas (CONABIO, 2009; Richardson, 2011). 

This was the case in the study area, where the presence 

of this species in 1990 was rare or limited to a very specific 

site to the south of the area. Nevertheless, in 2010 the 

plant was apparent in patches throughout practically the 

entire area; from these it then spread out, resulting in 

larger and more densely covered areas, as can be seen in 

the 2017 image. This signified a gradual increase of 6.75 

ha in 1990 to 114.5 ha in 2010, and to 147.0 ha in 2017, that 

is, 77.9 % more in the last seven years. The rapid spread 

of jarilla in the study area can be attributed to extrinsic 

or intrinsic factors. On the extrinsic side, it should be 

recalled that the area is subject to extensive unregulated 

grazing that has caused sheet erosion, rock exposure, and 

Figure 4. Changes in the ground cover of the Guadalupe Victoria 
Dam river basin. M. sec = Secondary shrubland, BqpOak-pine 
forest. 

Figure 3. Distribution of D. viscosa in the years 1990, 2010, and 2017 within the catchment area of 
the Guadalupe Victoria Dam in Durango, Mexico (Datum: WGS 81, UTM Projection, Geographic zone 
UTM13N).

vegetation disturbance, creating 

an attractive environment 

for the plant’s establishment 

just as several authors have 

proposed, indicating that the 

plant is generally found in sites 

distressed by erosion, fires or 

overgrazing (Rzedowski, 1978; 

González Elizondo et al., 2005 

and 2007; Acosta, 2016; and 

Rivas González, 2019). 

Authors like Acosta (2016) 

suggest that D. viscosa takes part 

in the first stages of ecological 

succession in the recovery of 

original vegetation; however, 

the findings of this study reveal 

that instead it replaces the 

original vegetation, especially 

shrublands where it settles and 

spreads. Given this circumstance, and considering that 

disturbances from grazing and fire of the site will probably 

continue, it is possible that jarillla will keep increasing its 

populations, establishing a state of disclimax that will 

remain as long as the disturbance conditions do not 

change. 

In terms of the plant’s intrinsic factors, wind dispersion of 

the seed (winged seeds) and germination mechanisms 

with no need for scarring processes (CONAFOR, n.d.) 

suggest that its establishment is facilitated in areas with 

sites exposed to bare ground like those of the study 

area, subject to extensive grazing, sheet erosion, rock 
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exposure, and occasional fires. The 

seed’s small size (1 mm) and its 

lack of nutritional reserves are typical 

of ruderal species (Grime, 2001), 

which adapt to disturbed sites with 

unlimited resources. Diverse studies 

(Jurado and Wstoby, 1992) of other 

species have shown that the size of 

the seed and its nutritional reserves 

are important to determine “safe” 

sites for their establishment. This 

contrasts with the case of plants 

with large seeds and nutritional 

reserves, such as oaks, which can 

remain viable for some time in 

wait of favorable environmental 

conditions for its establishment and 

survival. Unlike these species, those 

with seeds that have no reserves 

must find adequate conditions 

quickly to take root or otherwise the 

propagule dies for lack of nutrients 

(Fenner, 2000). 

It is highly probable that jarilla was 

not present in 1990 in the southern 

part of the study area, given that 

site has an altitude of approximately 

2225 m, at which annual frosts are 

frequent and intense, impeding 

the vegetative development of the 

plant in the long term. Figure 5 

demonstrates an intense frost at the 

start of 2017 and how it dried out the plant, but later resprouted from the 

base. This indicates that an important limitation to the distribution and spread 

of the plant is the zone where strong annual frosts begin, which impede or 

limit vegetative development. Figure 5 shows the area covered by D. viscosa.

Concerning thematic classifications, there was clear improvement between 

the 1990 classification, with a global precision of 44.5 %, and the 2017 

classification, with a global precision of 85.4 %. This can be due to two factors. 

i) Radiometric resolution, referring to the number of digital levels used to 

express the data obtained from the sensor (Chuvieco, 2010); in the 1990 

image, the TM sensor uses 8 bits, which results in 256 digital levels, while 

the 2017 image corresponds to the OLI sensor, which has a 12-bit storage 

capacity, that is, it can capture on 4,096 digital levels, making it 20 times more 

sensitive than a TM image (Chi, 2013). ii) Spatial resolution; it is possible that in 

the 1990 classification, the populations of D. viscosa covered a surface area 

of less than 10 m2, while the minimum pixel size of the Landsat multispectral 

images is 30 m2, and thus detection was not viable. The opposite case 

occurred in the 2017 image, where D. viscosa populations surpassed two 

hectares per location. 

CONCLUSIONS

The study area of D. viscosa has high potential for the 

species to spread and replace cropland, 

grassland, scrubland, and some oak-pine forests, having occupied 6.7 ha in 

1990, 114 in 2010, and 147 in 2017. Given that the potential distribution sites 

in the study area are very extensive, it is probable that this plant’s expansion 

will continue to climb in light of the disrupting conditions that are common in 

these locations. D. viscosa is a plant that can disperse and spread very quickly 

due to the properties of its seed, including its capability of wind dispersal and 

easy germination. The limiting factor in its distribution seems to be extremely 

cold conditions, which are more frequent and intense as the altitude rises. 

The invasive potential of viscosa is very high; if climate change reduces the 

frequency of frosts and brings about a rise in temperature, combined with 

continuous disturbances of vegetation from human 

activity, it is to be expected that this plant will notably 

increase its distribution toward higher altitudes and 

latitudes. 
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